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Abstract of "System Identification and Model Reduction Using Modulating Function Tech-

niques" by Yah Shen, Ph.D., Brown University, May 1993

Weighted least squares (WLS) and adaptive weighted least squares (AWLS) algorithms are

initiated for continuous-time system identification using Fourier type modulating function

techniques. Two stochastic signal models are examined using the mean square properties

of the stochastic calculus: an equation error signal model with white noise residuals, and a

more realistic white measurement noise signal model. The covariance matrices in each model

are shown to be banded and sparse, and a joint likelihood cost function is developed which

links the real and imaginary parts of the modulated quantities. The superior performance

of above algorithms is demonstrated by comparing them with the LS/MFT and popular

predicting error method (PEM) through 200 Monte Carlo simulations. A model reduction

problem is formulated with the AWLS/MFT algorithm, and comparisons are made via six

examples with a variety of model reduction techniques, including the well-known balanced

realization method. Here the AWLS/MFT algorithm manifests higher accuracy in almost

all cases, and exhibits its unique flexibility and versatility. Armed with this model reduction,

the AWLS/MFT algorithm is extended into MIMO transfer function system identification

problems. The impact due to the discrepancy in bandwidths and gains among subsystems

is explored through five examples. Finally, as a comprehensive application, the stability

derivatives of the longitudinal and lateral dynamics of an F-18 aircraft are identified using

physical flight data provided by NASA. A pole-constrained SIMO and MIMO AWLS/MFT

algorithm is devised and analyzed. Monte Carlo simulations illustrate its high-noise reject-

ing properties. Utilizing the flight data, comparisons among different MFT algorithms are

tabulated and the AWLS is found to be strongly favored in almost all facets.
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Chapter 1

Introduction

1.1 Overview

Mathematical models of dynamical systems are often required in engineering, physics,

medicine, economics, ecology and in most areas of scientific enquiry. In control and

system engineering, model-building or system identification from measurements of

input-output data on a dynamical system has been one of the most active fields

drawing enormous attention from researchers around the world. Among the many

well established parameter estimation schemes, algorithms like the prediction error

method (PEM) [1] [22] [12] have enjoyed a sustained boom in the past decade for

discrete-time models. Although many researchers have been utilizing different kinds

of transformations in an effort to link both continuous and discrete time model iden-

tification into a single framework, grim problems persist, like nonuniqueness of the
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transformations, making these methods unwieldy and potentially unreliable. Hence,

a direct attack on the problem is clearly preferred if a continuous time differential

model is desired. The research presented in this thesis will be focused on the develop-

ment of methodology in parameter identification for linear continuous-time differential

equation models.

Generally, the identification of linear differential systems can be formulated in a

deterministic vein using the classical steady state frequency domain approach for

estimating the system transfer functions, or using a variety of time domain methods

like Bellman-Kalaba's quasilinearization [3] [16], state variable filters, model reference

techniques and adaptive observers [56]. In a stochastic vein, the known methods

would include generalized least squares, instrumental variables, maximum likelihood

and extended Kalman filtering techniques [56] [1].

Stemming from Shinbrot's method [51] [28] of moment functionals and using a set

of carefully chosen modulating functions to facilitate converting a differential equa-

tion on a finite time interval into a set of algebraic regression equations in param-

eters, the modulating function technique (MFT) has been exploited as a tool for

identifying continuous-time models. The modulating process itself can be viewed

as discretizing a continuous-time differential system into a corresponding frequency

domain characterization by means of a "resolving frequency" Wo. Pearson and Lee

[37] [18] [38] [35] utilized a set of real commensurable sinusoids {cos rnwot, sin m_0t},

m = 0, 1, 2,..., M, where Wo = 27r/T is the resolving frequency or the "step size" in

2



the frequency domain, to build up the modulating function set through solving Van-

dermonde type linear equations 1 with which differentiating the data and estimating

unknown initial conditions for time limited data can be totally avoided. By contrast,

the other forms of modulating function methods, e.g., Hermite polynomials used by

Takaya [55], Poisson process by Fairman and Shen [7] and Saha and Rao [43] [44]

[45] [46], require either a long time interval of data or constrained initial conditions.

Computationally, the modulating process by Fourier type modulating functions can

be efficiently implemented by well documented Fast Fourier Transformation (FFT)

algorithms while the other algorithms have to face a heavier numerical burden asso-

ciated with the process of converting a differential equation on a finite time interval

into a set of algebraic equations.

Besides the earlier work mentioned above, Co and Ydstie [6] have applied the trigono-

metric based Fourier type modulating function technique (FTMFT) to model re-

duction and some MIMO system identification problems 2 in chemical engineering.

Pearson and Pan [36] [26] further expanded the FTMFT into the nonparametric

identification framework, under which three least squares nonparametric algorithms

for estimating system transfer functions are formed. Shen and Pearson [49] applied

1For numerical reasons, singular value decomposition (SVD) is strongly recommended [49] for

the higher order modulating function sets. Pearson has suggested a much more efficient complex

form of modulating function set (the set used in this thesis) which totally avoids tackling these

Vandermonde linear equations.

2The identified MIMO models presented in that paper have higher orders than the actual MIMO

systems, i.e., some unobservable modes were included in the models thus obtained.
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the trigonometric-based MFT to analog Butterworth filter banks used in wind tunnel

experiments in fluid dynamics, formulated Kalman filter type recursive schemes for

both parametric and nonparametric LS/FTMFT algorithms, implemented the nu-

merically sound Bierman's U-D matrix factorization algorithm for updating the high

dimension KaJman gain matrix, developed the Parzen-window-based order determina-

tion algorithm for parametric LS/FTMFT, tested a parallel-adaptive memory-saving

paradigm for the nonparametric LS/FTMFT method used in the on-line configura-

tions, and thoroughly demonstrated the affect of higher order assumptions for both

model and the modulating function set on the quality of the final estimation. Using

the nonparametric approach, Pan [26] developed frequency matching model reduction

algorithms which performed better than the parametric LS/FTMFT used by Co and

Ydstie [6]. A FTMFT-based high resolution frequency estimation method [27] for

signal processing has been proposed. Meanwhile the FTMFT has also been applied

to the time-varying systems and nonlinear system identification problems [40] [29]

[38] [31] [30] [32] [34] [33]. For brevity, FTMFT will be abbreviated as MET in the

rest of this thesis.

1.2 Organization of This Thesis

Following a brief introduction to MFT early in Chapter 2, one fundamental mod-

ulating property will be established showing that a modulated time domain white

Gaussian stationary process will be a stationary Gaussian stochastic sequence in the



discrete frequency domain with its covariance matrix being banded by the order of

the modulating function set. Then an idealistic equation error signal model is in-

troduced leading to the first weighted least squares (WLS/MFT) algorithm which is

based on a maximum likelihood estimate. For the much more realistic stochastic sig-

nal model with additive measurement noise, the explicit form of the regression error

covariance matrix, which is a function of the unknown parameters, will likewise be

shown to be banded but no longer stationary in the discrete frequency domain. Using

this covariance matrix as a weighting, a numerical relaxation scheme dubbed as the

adaptive weighted least squares (AWLS/MFT) algorithm wilt be devised, which is

an approximated maximum likelihood estimate a. The third part of Chapter 2 deals

with important implementation issues incurred by the use of a complex modulating

function set. In order to combine both the real and imaginary parts into a unified

cost function, one Lemma regarding vital relationships among the different covari-

ance matrices is established as a prerequisite to constructing a joint likelihood cost

function linking the information from the modulated real and imaginary quantities.

In order to assuage the affliction caused by inverting the covariance matrix, a recur-

aThe maximum likelihood estimate here is different from the ML estimate in [39] where multi-

nonoverlaping data blocks are required, but in the AWLS/MFT, only one single data block is needed

and this is perhaps a more economical and realistic framework especially in time limited transient I/O

data. Meanwhile the framework of the AWLS/MFT can also guarantee a finer resolving frequency

for the same short length of data. As a matter of fact, the AWLS/MFT algorithm was partly inspired

and initiated so as to ease the urgency of efficiently utilizing rather limited available flight data in

an aircraft identification problem (see Chapter 5).
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sive banded-sparse matrix inversion algorithm will be derived and its computational

efficiency and stability will be elucidated. Finally, a 200 Monte Carlo simulation

comparison study is presented for the AWLS/MFT, WLS/MFT and LS/MFT, and

a comparison is made with the popular prediction error method (PEM), where the

improvement and superiority of WLS/MFT and AWLS/MFT algorithms will be illu-

minated. This chapter is the most important part of the thesis and will serve as the

theoretical cornerstone for the rest of the thesis.

Armed with AWLS/MFT, Chapter 3 deals with model reduction. The performance

of AWLS/MFT will be evaluated for six examples published in the literature pro-

viding comparisons with other known methods like nonparametric frequency fitting

[26], FF-Pad6 approximation [14], time-domain optimization [47] and the well known

Balanced-Realization (B-R) technique [24]. As one of the two best model reduction

schemes in our comparison studies, AWLS/MFT is found to be able to perform at

least as well as the B-R scheme, and in addition, possesses a kind of flexibility and

versatility that the B-R algorithm lacks.

As the second application of the AWLS/MFT algorithm, the most general setting

of MIMO system identification will be considered in Chapter 4. Inasmuch as the

original transfer function matrix might not be modulatable directly in this case, one

procedure is suggested for converting from an unmodulatable form to a higher order

modulatable differential system. Based on the measurement noise signal model, the

decomposability from MIMO into a set of MISO models is discussed from the view-



point of a joint likelihood cost function. AWLS/MFT is applied to each member of

the set of MISO systems to get an identified model for the higher order system 4, and

then the model reduction scheme of Chapter 3 is employed to obtain the original un-

modulatable transfer function matrix. Five MISO systems with different bandwidth

and magnitude combinations are used as examples to illustrate the impacts of these

combinations on the accuracy of estimations and the overall feasibility and applica-

bility of this approach. Results from 200 Monte Carlo runs under moderate additive

noise settings have been quite encouraging.

In Chapter 5, flight data of an F-18 aircraft provided by NASA will be utilized, as

a comprehensive application example of the WLS/MFT and AWLS/MFT algorithm,

to identify the longitudinal and lateral dynamical systems of the aircraft. Due to the

physical constraints posed by the aircraft itself, AWLS/MFT is first extended into a

pole-constrained form, contrary to the decoupled form used in Chapter 4, and then

employed to tackle the physical flight data. Simulation studies on these algorithms

also manifest good noise-rejection features. Other extended AWLS/MFT algorithms

based on the coupled state space models are devised as well, though they do not

produce as good results as the I/O-based constrained AWLS/MFT algorithms.

4Co and Ydstie [6] used LS/MFT to accomplish this step and took it as the final result which

actually leads to higher order models containing unobservable modes.



Chapter 2

Weighted Least Squares in MFT

2.1 Brief Introduction to the Basics of MFT

Consider the following nth order SISO differential equation system

__a,__iy(O(t)= __b,__,u(O(t)+e(t), ao= 1 (2.1)
i=0 i=0

means ith derivative, i.e.,

effect of modeling errors.

where {a_} and {b_},i = 1,2,...,n, are the time-invariant parameters needed to be

identified from the input-output data pair {u(t), y(t);t • [0, T]} and superscript "(i)"

y(°)(t) = y(t) and y(i)(t) = diy(t)/dti; e(t) represents the

Assuming smoothness, the property which an n th order

modulating function ¢(t) has to satisfy relative to a fixed time interval [0, T] is:

¢(0(0) = ¢(0(T) = 0; i = O, 1, 2, ..., n - 1. (2.2)



Multiplying both sidesof (2.1) with ¢(/) and then integrating by-parts over [0,T],

while noting (2.2), leads to the following essential relation of the MFT:

- ]0Y_(-1)ian_i y(t)¢(')(t)dt
i---O

. /o= Y_(-1)ib._i u(t)¢(')(t)dt + e(t)¢(t)dt,
i=O

ao_ 1.

(2.3)

(2.1) with ¢(t) has transferred the

model

1

T

1 n+m

= T E Ck-me-Jkw°t
k=rn

n

1 _ ¢k¢_J(k+m)wo t
T k=O

m = 0, 1,2, ...,M

where wo is called the resolving frequency defined as a_o = 2rr/T and T is the time

interval of the data block.

Applying the above modulating function set to (2.3) leads to the following regression

7_(m)=f(m)O+en(m), m = 0, 1,2,...,M

1The equivalence between (2.4) and (2.5)--_ (2.7) follows from the binomial expansion.

(2.s)

(2.4)

(2.5)

(2.6)

The consequences of (2.3) are: (i) modulating

derivatives of the original data pair {u(t), y(t);t E [0, T]} into derivatives of a chosen

known function ¢(t), and (ii) the estimation of unknown initial conditions can be

totally avoided due to (2.2).

Consider specifically the nth order complex Fourier type of modulating function set1:



with the regressorrow vector: 3'(m)= ['_(m),...,%U(m),'y_'(m),...,7_(m)] in which

_T

"T[(m) = (-1) n-i t f(t)¢_')(t)dt (2.9)
J0

i = 0, 1,2,...,n; f(t)= { y(t) or u(t). }

The parameter vector 0 and the model error c,_(rn) are defined respectively as

( --a 1

_a n

bl
(2.10)

fo T¢_(rn) = e(t)¢m,.(t)dt. (2.11)

Introducing the following notation:

Y = ('y_(O),%_(1),...,_/_(M))T (2.12)

_(0))
F = ,_(1). (2.13)

"y(M)

e = (_,_(0),_n(1),...,e,,(M))T (2.14)

the relation (2.8) can be rewritten into a vector and complex-valued regression form

Y = F0 + e (2.15)
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2.2 MFT Under a Stochastic Framework

2.2.1 Mathematical Antecedent and Modulated White Noise

Stochastic Calculus in Mean Square Sense

Due to the involvement of stochastic processes, all the stochastic calculus operators

including limits, continuity, integration and differentiation in this dissertation are

presumed to be carried out in the mean square (m.s.) sense (refer to Appendix D for

details). In light of Appendix D, especially Corollary 1 and Corollary 2, all the above

established modulating properties and relations hold true as long as {u(t), y(t), e(t)}

are n th order m.s. differentiable.

Maximum Likelihood Estimate

Armed with this prerequisite, some further elaborations on (2.15) can be continued.

In order to handle the complex regression form more efficiently, we shall examine the

real regression form first. Later on, in the implementation section of this Chapter,

the process of converting a complex regression form into a real regression form will

be scrutinized. For a real regression equation in the form of (2.15), provided the

equation error e has jointly Gaussian A/'(0, W) distribution, the log-likelihood function

of e can be written as [11]

M In IWI 1
L:(O, W) = - :::-- ln(2r) (Y - ro)Tw-I(Y - to) (2.16)

2 2 2

11



If the covariancematrix W is known , then from the necessary condition for maxi-

mizing the likelihood function, oc = 0, the well known weighted least squares estimate

-- (FTW-1F)-IFTW-1 Y

of 0 can be written as

(2.17)

and this estimate will be the maximum likelihood estimate of 0 or the minimax

entropy estimate [11].

Another nice property, which might be used in the system order determination prob-

lem, can be stated in the following Lemma:

Lemma 1 (distribution of posteriori cost function) Let the cost function J(O)

be defined as

g(o) = (Y - rTo)rw-l(y - rr0)

then its corresponding WLS estimate is

-- (FTw-1F)-IFTW-Xy. (2.18)

If the covariance matrix W of the sequence {en(m)}, m = 0,1,2,...,M, is known,

then for the posteriori cost function J(O),

J(O) ,,_ x2(M + 1 -h) (2.19)

where symbol ,_ means "obeys" and h is the dimension of the parameter vector O.

Proof: Define output error residuals _ as

_=Y-rO. (2.20)
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Putting (2.18) into the abovedefinition:

= [I- r(r_w-'r)-lrTw-']_ (2.21)

! 1

Decompose W -1 = W-½ • W-F, and apply linear filter W-_ to the residual _:

w-½_ = w-½[i- r(r_w-'r)-lrrw-']_

!i - w-½r(r_w-'r)-'r_w-}!, w-i_
x

(2.22)

Directly from the above definition of P, we can prove that P is an idempotent matrix

p2 p.

From Lemma A.28 [54] we know that the following statements hold for an arbitrary

idempotent matrix P:

• All eigenvalues are either zero or one

• Rank(P)=trP

Then in our case

Rank(P) -= trP

= tr[I- w-½r(rrw-'r)-'rTw-½]

= M + 1- tr[(rrw-'r)-'rrw-½w-½r]

= M+l-fi

where fi is the dimension of 0.

Paraphrasing from Lemma B.8 [54]:

13



AssumeX -._ A/'(m, W) and set Z = AX + B for constant A and B of

appropriate dimensions. Then Y ,-_ .Af(Am + b, AWAT).

1

Therefore, for the filtered sequence X = W-_e,

X = W-½e,'., A/'(O,I) (2.23)

J(O) = _Tw-1 _ = xTpx. (2.24)

Paraphrasing from Lemma B.13 [54]:

Let X be an M-dimensional Gaussian vector, X ,-_ A/'(0, I) and let P be

an (MIM)-dimensional idempotent matrix of rank M - ft. Then xTpx

is x2(M -fi) distributed.

Directly applying the above Lemma to J(0), we have J(t}) ,-_ x2(M + 1 - fi). The

proof is complete.

In most identification problems, the covariance matrix W is not available in advance.

But if some knowledge or assumptions about the statistics of the regression model

error e can be imposed beforehand, it is indeed possible, as shown in the future

sections, to derive an explicit form of W which may or may not depend on the

parameters 0.

14



Stationary White Gaussian Noise

Time domain stationary white Gaussian noise is a symbolic process n(t) = l_Vo(t)

(where Wo(t) is a Wiener-Levy process) with mean function

E{n(t)} -0

and correlation function

where _ is the Dirac delta function. From the definition of m.s. derivative listed in

Appendix D, this white Gaussian noise is not m.s. differentiable at all. However,

after some dedicated and lengthy mathematical maneuvers, e.g., pp 313,,_328 in [17],

a certain justification for its wide usage can be made.

To conclude our discussion, let us summarize what we have gained by intro-

ducing the concept of white Gaussian noise. For one thing, it allows us to

apply the rules of MS calculus even to processes that are not MS differen-

tiable, and it greatly simplifies calculations involving the Wiener integral.....

More importantly, however, the white Gaussian noise represents an idealized

form of a continuous physical noise just like the Dirac delta function is an

idealized form of a unit impulse. Thus, whenever we wish to model a physical

noise that in reality may consist of densely packed narrow impulses of constant

energy and random polarity, we may reach for a white Gaussian noise as a

15



suitable mathematically tractable idealization.

-- H.J. Larson and B.O. Shubert (pp 327 in [17])

Another vivid example of approximating Wo(t) on [0, T] with a sequence of pro-

cesses, W(k)(t); k = 1,2, ..., was illustrated in [42], pp 94,,,97, where it was proved:

(i) the sample functions of W(_)(t) are infinitely often differentiable on [0, T] with

probability one, (ii) the sequence W(k)(t) is smooth in the m.s. sense on [0, T], (iii)

E{W(_)(t)} = O, t e [0, T], (iv) W(k)(t)is normally distributed, (v) If tl _< t2 <

t3 <_ t4, the increments of Wtk)(t) on It1, t2) and It3, t4) are orthogonal for sufficiently

large k, (vi) As k _ oo, W(k)(t) _ W(t) in m.s. uniformly in t E [0, T], (vii)

E{W(k)(s)W(k)(t)} --* E{W(s)W(t)} as k --* _. Hence W(k)(t) for a sufficiently

large k will not only be m.s. infinitely differentiable, but also infinitely close to the

ideal Wiener-Levy process. In the rest of this thesis, we therefore view that the white

Gaussian noise is actually defined as n(t) = l)d(k)(_), k --* cx_.

Modulated White Gaussian Noise

From the discussion in 2.1, we can say that modulating a time domain process using

a set of modulating functions is equivalent to applying a linear transformation to it.

For Gaussian distributed random processes, one well known fact is that any linear

operation performed on a Gaussian process results in another Gaussian process [17].

In our case, the modulating affect on a white Gaussian noise e(t), t E [0, T], can be

exhibited in the following Lemma:
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Lemma 2 (modulated white noise) If e(t) is white Gaussian noise in the con-

tinuous time domain with E[e(tl) . e(ts)] = a 2. So(t, -- t2) and e.(m) is the result of

modulating e(t) by the n th order modulating function set ¢,_,,_(t) defined in (2.6), i.e.,

_(m) = Cm._(t)e(t)dt

then the sequence {e,(m)}, m = O, 1, 2, ..., M, is a stationary discrete Gaussian pro-

cess; its covariance matrix We = E(e*e T) is a banded Toeplitz matrix with bandwidth

n, each element of which is real and can be expressed as

We(re,m÷,)-- E[e_(m)e_(m+ l)] = /
0

- ___ (-1)'.(2_)!
( T (_-t)_(_+l):

Ill > n
(2.25)Ill_<n

Proof: From the definition and Corollary 3 in Appendix D

/0 /0E[en(m)e_(m + l)] = E[ e(tl) . ¢m,,_(tl)dtl . e(t2) " ¢*,,_+t,,_(ts)dt2]

fffo T= E[e(tl). e(t2)l" Cm,n(tl)" Cm+hn(ts)dtldts. (2.26)

Noting that E[e(tl) • e(ts)] = a s. 5D(tl -- t:) and utilizing the sifting property:

foTg(t) "_o(t -- r)dt = g(r)

for any continuous function g(t), equation (2.26) can be written as

E[e_(m)_;(m+ 1)]= _s Cm.,(t)¢;_+,At)dt. (2.27)

Considering the relations (2.4), (2.5), and (2.6):

1 _ck_e_i(,l+,,,),oot] [__Ck2eJ(k2+m+l)¢oot]Cm,.(t)¢;_+_,_(t)= _[
kl =0 k2 =0

1 n n

- rs E E ck,c_e_tt+(k_-"_)l_o' (2.2S)
kl =0 k2 =0

17



and substituting this into (2.27)

32 __. Z foT ejtt+(k2-kl)l'°tdt. (2.29)E[_.(m),:(m + t)]= T-z ck,ck_
kl =0 ks =0

But only the frequency indices satisfying l + k2 - kl = 0 will contribute to the above

integral, i.e.,

0 Ill > n (2.30)E[¢,_(m )e: (m + /)] a s _'_n-I[ -f z-k=o ckc_+l Ill <_ n

and from formula O.156.2 in [13]

()()ckck+, = E(-I) _" n . n
k=o k=o k k + 1

(-1) t • (2_)!
(_- t)!(_+ l)!

Combining the above two equations, we have

k

(2.31)

Therefore, the covariance matrix is banded with bandwidth n and each element is

just a real function of l so that the sequence is at least a wide sense stationary (w.s.s)

process. But for a w.s.s. Gaussian processes, it must be stationary. Equation (2.32)

also has manifested the fact that the covariance matrix We is a Toeplitz matrix. The

proof is complete.

More generally, for any jointly Gaussian distributed time domain stationary process,

its modulated sequence would still be a stationary process, except that the bandwidth

of the covariance matrix is not necessarily equal to the order (n) of the n th order

modulating function set.

18
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2.2.2 WLS Algorithm and Equation Error Signal Model

Consider the idealized equation error signal model on [0, T]:

n n-1

a,,_,¢')(t)= + e(t), ao= 1 (2.33)
i=O i=O

where the equation error e(t) is white Gaussian noise, and the {ai} and {bi}, i =

1,2, ..., n, are the time-invariant parameters needed to be identified from the input-

output data pair {u(t), y(t);t C [0, T]}. Using the same notation, the corresponding

modulated equation error model can be put into the same regression form:

Y = I'0 + e (2.34)

where the error vector e = [en(0), ..., e,_(M)] T results from modulating the white Gaus-

sian noise e(t) using the n _ order modulating function set {¢m,,_(t), m = 0, 1, ..., M}.

For the error sequence {e_(m)}, based on Lemma 2, its covariance matrix will be

We = E(e*e T) which in this ideal setting is not related to the system parameters or

input/output data and hence can be written out explicitly in the form of (2.32). With

this covariance matrix as weighting and the discussion in 2.2.1, a maximum likelihood

estimate can be obtained and framed into the following WLS/MFT algorithm2:

Algorithm 1 (WLS/MFT Estimate)

1. Build the weighting matrix W_ = E(e*e T) based on Lemma 2.

_For a detailed implementation of this algorithm, please refer to Section 2.3
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. Compute the parameter vector from

OWLS = (FTV_-IF)-'FTW_-'Y. (2.35)

Remark: In most cases the variance a 2 of the noise e(t) is not known even though it

has no affect on the above algorithm due to cancellation in (2.35). Thus, if we rewrite

a 2

We = _-" We, where We is defined only by binomial coefficients and the order n, then

(2.35) can be adjusted accordingly as

 wLs = (rrw -'r)-lrrwo-lY. (2.36)

2.2.3 Measurement Noise Signal Model and AWLS/MFT

Algorithms

Measurement Noise Signal Model

Different from the equation error signal model, the measurement noise signal model

shown in Figure 2.1 can be characterized as the ideal input/output data pair {_(t), _)(t) }

contaminated with additive white noises v(t) and n(t). Our goal here is to identify the

parameters of model H (s) from this contaminated data pair { fi(t) -4-v(t), _(t) "4-n(t) }.

Assume the model H(s) in the time domain is of the differential form

n n--1

__, an-,_)(O(t) = _ b,-,fi(0(t) a0 = 1. (2.37)
i=0 i=0

Then from Figure 2.1

fi(t) = u(t)- v(t) (2.38)

_(t) = y(t)- n(t). (2.39)
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_(t)

vlt (

; H(s)

u(t)

y(t)

): n (t)

y(t)

Figure 2.1: Measurement noise signal model.

Substituting fi(t) and _)(t) into model (2.37):

n n-1 n n-1

a,_-iY(i)(_) = _ b,_-iu(i)(t) + _ an-in(i)(t) - _ b_-iv(i)(t)
i=0 i=0 i=0 i=0

(2.40)

Unlike the equation error model, e(t) is directly related to the parameters needed to

be identified.

Covariance Matrix of Modulated Error Sequence

Before modulating the above equation, let us observe a general relation for any n th

order differentiable function f(t):

/oTf(i)(t) " ¢._,n(t)dt : (-1) {. foTf(t).¢_!_(t)dt

: T(-1)'.foTi_(-jka_o)'ck-mf(t)e-Jk_°'dt

1 ,_+m _0T= -_ E (Jkw°) ick-m" f(t) e-jk_'°tdt
k -._ _% • _ •

F(k}

1 ,_+m

= y F_ (jk_0)%_mF(k).
k----m

• Fi_m) "

= Tfi(m)

(2.41)

(2.42)
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Armed with this relation, the modulated e(t) becomes

[ ]=fo T _ a"-in(i)(t) - E bn-iv(i)(t) " Cm,,,(t)dt
i=0 i=0

Partition 0 in (2.10) as

Oa .o_)

Then from equation (2.43) and (2.41)

(1)_(,_)=(U,(r_),N,_,(m),...,Uo) -0o +(V,-,(m),...,Vo(m))(-0b)

l"+m (1) T:_z?-m((_o)°,...,(J_o)°) -0o /o_(,)_-J_o,_,
_(k,_,,0,)

ln+_ !j/0 T+_ Y_ Ck-m ((jk_oo)n-1,...,(jkwo) °) (-Oh v(t)e-Jk'_°tdt

Z(k,_,,Ob)

1 n+m _0 T 1 n+m rT=-_ _ a(k, rn, O_) n(t)e-Jk'°tdt +5 y_(k, rn, Ob)lv(t)e-Jk'°otdt
k=m -t k= m .tO

(2.43)

(2.44)

(2.45)

which serves to define the parameter dependent frequency functions a(k, m, 0=) and

_(k, m, 0b). If the statistics of n(t) and v(t) are known, the above relation would be

the starting point of computing the covariance matrix of the residual error frequency

sequence {e(m),m = 0, 1,2, ...,M}. In a special case where n(t) and v(t) are mutually

independent and (approximately) white Gaussian, we have the following Lemma:
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Lemma 3 Ifn(t) and v(t) are mutually independent white Gaussian noises, then the

covariance matrix W, of the modulated error sequence {e(m), m = 0,1,2,...,M} is

banded with the order of the modulating functions as bandwidth, and its (m, m + l)

element denoted as W,(m.m+Z) is real and can be expressed as

Ws(m,m+l) = E[e(m)e'(m+ l)]

0
= -_z_?__'o_(kl + m + l,m, Oo)_'(kl+ m + l,m + t,Oo)

, _',n-t al k .m ±
-I- T 2--,k2=0 MI, 2 -I- 7- l, m, 0b)fl*(k2 -4- m + l, m q- l, Ob)

[l]> n

Ill<

(2.46)

or in brevity

W_ = g(O) and W, is real. (2.47)

Proof: Denoting the first term of E[e(m)e*(m + l)] by Wlst:

] n+m n+rn+l T T

Wlst:_-52 _ _ _(k3, rn, O_)'_'(k4, rn+l, Oa) fofoE[n(t,)'n(t2)]e-Jk3_°tl+Jk'_°t2dtadt2
k3 =rn k4 =m+l

2 3D(tx -- t_)], this leads toFor the white noises E[n(ta). n(t2)] = a,.

1 n+rn n+m+l fT

Wlst "- _ Z Z °g(k3,m,Oa) Ol'(k4,m "_ l'Oa) Jo e-j(k3-k')w°tdt"
k3=m k4 =m+l

Letting ks = k3 - m, and ks = k4 - m - l, we have

1 n ,, )/Te-j(ks-ks-t)_,0tdt"
Wl,t= "_ Y_ Y_ a(k5 + m,m,O_)a*(k6 + m + l,m + l,O_

k5 =0 k6 =0 J 0

Replacing k6 with kl and noting that the integral is nonzero only for ks - k6 - l = 0,

"_ )"]k_=on-Ic_(kl + m + l,m, Oa)ot*(kl + m + l,m + l, Oa) Ill _<t
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From the independence assumption, the second term of E[_(m)_'(m +/)] can be

similarly shown to be

W2nd : _ 0

_T n-lt Ek_=o_(k_ +

Based on the definitions of _(k, m, 0o) and _(k, m, 0b) in (2.45), the simple yet im-

Ill > n
m + t,m, Ob)_'(&2+ m + t,m + 1,0b) ltl _<n

> 0

> 0 for all m and rh (2.48)

portant facts that

{ o_(k,m,O,,).o_'(k,r:n,O,,)_(k, m, oh) _'(k,,_, oh)

can be easily drawn. Thus, combining Wlst and W2nd with (2.48) yields (2.46) and

(2.47). This proves Lemma 3.

AWLS Algorithms without/with Stability Constraint

Due to the dependence of cr(.) and/_(.) in the covariance matrix on the parameters

desired to be identified, the maximum likelihood estimate discussed in Section 2.2.2

cannot be implemented directly. From a numerical point of view, we have the follow-

ing posed problem:

How to find solutions for _AWLS and l)¢'s from the implicit nonlinear equa-

tion set

OAWLS= (rrvc,-'r)-lrrw,-1y (2.49)

_vs = g(_AWLS). (2.50)

To solve it, the following relaxation scheme, which will be referred to here as the

adaptive weighted least-squares (AWLS) algorithm, can be constructed; it can be
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viewed as an approximate maximum likelihood estimateand is similar to the algo-

rithm presentedin pp 47,-,50of [11]in terms of numericalrelaxation:

Algorithm 2 (AWLS/MFT estimate) 3

i. Choose an error tolerance # for convergence judgement and initialize the step

index i = O.

2. Estimate initial ^oOAWLS with identity matrix I or W_ in (2.49).

3. Give an initial estimate ofl_V ° from (2.50) where 9(0) is defined by (2.45),--,(2.47).

4. i=i+l.

5. Estimate OAWLS^' from (2.49) with I_V_-a

^i
6. Compute I_Vi from (2.50) with OAWLS.

7. If ^i ^i-1OAWLSll < stop; otherwise continue.IlOawLs - - _,

8. Go back to step 4.

Remarks on the above AWLS/MFT Algorithm:

1. Unlike the residuals in Lemma 2, the sequence {e(ra)}, m = 0, 1, ..., M, for the

residuals in Lemma 3, is no longer stationary.

2. Because only a biased estimate OAWLS can be obtained, so likewise the covari-

ance matrix will be biased. Therefore, the AWLS estimate is no longer the

aFor a detailed implementation of this algorithm, please refer to Section 2.3
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exact maximum likelihood estimate. But whenthe biasis small, it is still close

to the maximum likelihood estimate.

^ !

3. The linear filter W2 is no longer a whitening filter as in Lemma 1. But when

the bias is small, Lemma 1 still holds approximately.

. Since implementing the algorithm depends only on the ratio of the pair (a_, a_),

2 2 is zero,it can still be implemented for unknown noise levels when either c,_ or 0%

2_ 2i.e., one is negligible relative to the other, or when a,_ a_.

5. When the distributions of n(t) and v(t) are not known beforehand, the above

algorithm still could be applied and in almost all our cases gives better results

than the LS/MFT and WLS/MFT algorithms.

6. Numerical experiments show that if the algorithm converges, it will converge to

the same value no matter from which initial weighting, i.e., either from LS or

from WLS, even though the rate of convergence could be different*.

7. The AWLS algorithm is much less sensitive to the chosen modulating bandwidth

_oB, implying that it is a more robust algorithm 5.

4Using the estimate of 0 with the WLS/MFT algorithm to estimate 1_¢° is more likely to lead to

a faster convergence.

_This will be further illustrated in 5.4.2. Please refer to Pearson and Lee [39] for guidelines in

determining the modulating bandwidth wB and the resolving frequency _0.
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8. As for convergence of the above algorithm, the comment from Goodwin and

Payne (see pp 50 of [11]) regarding their algorithm seems also valid for this

algorithm: "Unfortunately the authors are not aware of the existence of a global

convergence proof for the above relaxation algorithm. However, computational

studies indicate that the algorithm works well in practice." As a matter of fact,

Algorithm 2 has never failed to converge in all our numerical study examples.

In most control systems, the estimated model is required to be stable. Inspired by

the Projection Algorithm on pp 367 of [22], the Algorithm 2 could be easily adjusted

according to the following form so that the estimated model with stable poles can be

essentially guaranteed.

Algorithm 3 (AWLS/MFT estimate with stability constraint)

I. Choose an error tolerance # for convergence judgement and initialize the step

index i = O.

^0
2. Estimate the initial OAWLS with identity matrix I or We in (2.49).

3. Obtain an initial estimate oflTV ° from (2.50) where 9(0) is defined by (2.45)_(2.47).

4. i=i+l.

^' from (2.49)with¢e'-1.5. Estimate OAWLS

6. If OiAwLS is not stable, i.e., the polynomial _=o fi_-i si is not Hurwitzian, mirror

the unstable poles into the left-half-plane and recalculate _i • otherwise skipAWLS_

this step.
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^i7. Compute I?V_ from (2.50) with OAWLS.

- OAWLS H <_ # stop; otherwise continue.

9. Go back to step 4.

Remark: In most cases, this adjustment is not necessary. However, when there exist

marginally unstable poles, the above algorithm has been proven to be very effective

(as a typical example, see Section 5.4.2).

2.3 Implementing WLS/MFT and AWLS/MFT

As mentioned earlier, both the real and imaginary parts of Definition (2.4) are still

modulating functions in themselves. Therefore, modulating a differential system will

provide two sets of algebraic equations corresponding to the modulated real and

imaginary parts respectively. In this section, we shall devise a joint cost function

which can utilize both parts and can be easily minimized under the weighted least

squares framework. But first, some basic relations bridging the real and imaginary

parts should be explored and disclosed.

2.3.1 Basic Relation of Covariance Matrices

Considering the complex modulating function set (2.4) defined as

1 _j_,oot(e_J,,o , _ 1),_=

28
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where n is the order of modulating function set and m -- 0,1, 2, ..., M, it can be

separated into a real part ¢_,,_(t) and imaginary part Cm,,_(t).1.

¢m,_(t) R . I= ¢m.,(t)+ 3¢m.,(t). (2.52)

Denoting the signal quantities modulated by ¢_,,_(t) with subscript R and those

modulated by ¢_,,(t) with subscript I, we have (cf. (2.12),,_(2.15))

Y = Yn +jYI (2.53)

1" = pn + jrl (2.54)

e = eR+j¢i. (2.55)

The regression Y = 1"0 + _ can also be divided into two parts such that

eR = Yn - rno (2.56)

et = YI - FiO (2.57)

Further, define four different covariance matrices (W, Wn, W_ and WRI) 6 with their

(m, m + l) th element as

w(m._+,)= E[_(m). _'(m+ l)] (2.5S)

wn(,.,,.,_+t)= E[en(m).en(m+/)] (2.59)

w_(_._+,I = E[_,(r,). _i(m+ t)] (2.60)

WRl(rn,rn+l)=" E[£R(m)"_l(m"_-/)] (2.61)

6For the equation error signal model, they become (We, W_, W_ and W_m). Accordingly, for

the measurement noise signal model, they will be designated by (1418,W,_, W_x and W_m ).
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where rn = 0, 1,2,...,M, l = 0,+1,+2, ....

earlier, we have

Then for the signal models mentioned

Lemma 4 (relations among the different covariance matrices) Under the mea-

surement noise signal model as shown in Figure 2.1 and the modulating function set

(2.51), /f n(t) and v(t) are mutually independent white Gaussian noises, then the

following relations hold true:

1 {ws_,_.m+_) = -_Ws(m,,,,+z) +

1

WSl(rn,rn+ I = "_W$(rn,m.l.i )

where W$(rn,m+l ) ZS

0 ; m7£0 orlT_O
_a 2 ___h2 (2.62)2T ,_ + 2T-n ; m = O and l = O '

0 ; m¢O orl¢O- __._a 2 __h2 (2.63)2T n+2TVn ; m=Oandl=O '

defined in Lemma 3, eqn. (2.46), and

wsm(,,.,,+,) = 0. (2.64)

Proof: From definition (2.55)

therefore

eR(m) = lie(m) + e'(m)] (2.65)

WaR(m,rn+_) = E[eR(rn). eR(m + l)]

1

= _E {[e(m) + C(m)]. [e(rn + l) + e'(m + l)]}

1

= -_E {e(m)e(m + l) + e(m)e*(m + l) + e*(m)e(m + l) + e'(m)e'(m + l)}

(2.66)

3O



Here we need first to prove the fact that terms like E[e(m)_(m+l)] and E[_'(m)_'(m+

/)] will contribute to equation (2.66) only when m = 0 and l = 0 due to the orthogo-

nality of {e -jk_°t, k = 0, 1,2, ...}.

Using the condition of mutual independence, equation (2.45), and Corollary 3 in

Appendix D,

2 n+m n+m+l eT t _ .

E[e(m)e(m+l)] = a,_
"_ E E OL(kl'Tl'L'Oa)Ot(k2'rrl-{-l'Oa [ n(tl)n(t2)l_-3tklwot+k2toOt]d_ldt2)JoJoE +

kl =mk2=m+l

l-la

2 n+m n+m+l tT rT .

"o K IJoJoZtT--7 kl,m,Ob)fl(k2,m+l,Ob v(tl)v(t2)]e-_[kl"°'+k2_'°qdtldt2
k k '1 _- 2 _ "I-

I12

(2.67)

Note the fact that

E[,_(t_).,_(t_)]= o-_,_D(t,- t_).

Then the first term of equation (2.67) can be reduced to

2 n+m n+m+l

kl =m k2=m+l

(2.68)

In the above, m k 0 and m + l >_ 0, so kl > 0 and k2 k 0. But due to

IT { 0 " kl+k2#O
e-J(ka+k2)"°tdt = ' (2.69)

J0 T ; kl+k2=0 '

we have

HI=_" 0 ; kl+k2-¢O (2.70)
_2(0, 0, 0_) ; kl + ks = 0L

Condition ka + ks = 0 is equivalent to m = 0 and l = 0. Further from the definition

(1)a(k,m,O,,) = ck-m ((jkwo)", ..., (jkwo) °) -0,, (2.71)
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wehavea(0, 0, 0a) = -a,_. Therefore,

Following a similar argument, we have

m :_ 0 or 1 :/: 0

m = 0 and l = 0 (2.72)

II 2 = ( 0_2h2
TUn

as well. Substituting II1 and H2 into (2.67)

E[e(m)e(m+ l)]= { 0_2_2 5[h_
TUn+ TUn

is proved. This also automatically implies

; m#0or/_0

; m=0andl=0

; m#Oor/#O

; m=Oandl=O

(2.73)

(2.74)

E[C(m)e*(m+ l)] = {E[_(m)_(m+ t)]}*= _f0zX 2 dh2( Tan + T Vn

; m¢0orl¢0

; m=0andl=0

(2.75)

Using (2.74), (2.75) and Lemma 3, equation (2.66) can be rewritten as

1

w,,_.....+,) = _. {E[_(m)_'(m + t)] + E[,(,_)_(m + t)]}

1 _" 0 ; m¢0or/¢0

= -_ws<.,,.,+,)+ [ _. 2 dh22Ta,_+2TVn ; m=0andl=0

(2.76)

If it is further noted that

_,(m)= _[_(m)- c(m)] (2.77)

then

Ws,¢,,,,,_÷,) = E[et(m)el(m + l)]
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1
= 4i--_ • E{[e(rn)- e'(m)J[e(m + l) - _'(m +/)]}

_-.E{4m)4m + t) - ¢(m)_(m+ t) - _(m)_'(m+ l) + _'(m)_*(m+ l)}
--z i

(2.78)

Similarly considering the results of (2.74), (2.75) and Lemma 3, the above relation is

reduced to

1

w.._,_+,> = 5 {E[4m)C(m+ t)]- E[,(m),(m + 0]}

1 { 0 ; m-_Oor/¢O= 2 w_("'m+°- _a 2+_-b 2 • m=Oandl=O
2T n 2T n ,

(2.79)

Hence, relations (2.62) and (2.63) are established.

(2.77), (2.74), (2.75) and Lemma 3:

Finally, using identities (2.65),

w_,(,,,,,,,+,) = E[en(m)ei(m + l)]

1

= 4--_" E{[e(m) -I- e'(m)]. [e(m + l) - e'(m q-/)]}

1 1 1

= _" Im{ws(m.m+,)} + -_" E[e(m)e(m+/)1- _. E[F(m)C(m +/1]

= 0 (2.80)

Therefore, the proof of this Lemma is completed. In the form of a matrix, the above

Lemma implies:

W, m = 0, (2.81)

1

W_ R = _(W_ + r/_r/T), (2.82)

W_, = _(Ws - r/,r/T), (2.83)
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wherethe column vector 7/is definedas

_s
= 0

0

/0.2 _ if2. ^ )

, l:..,.a z -l- :.x.hz
-- VT n" TUn .

OMxl
(2.84)

As a matter of fact, Lemma 2 and the equation error signal model could be just

deemed as a special case of Lemma 3 and Lemma 4, and correspondingly, r/e should

be modified as:

and

weRI=0, (2.86)

w_R= l(w, + r/,r/T), (2.87)

Wol = _(W_- ,o,[). (2.88)

Hence, the following derivations about implementation schemes will be applicable to

both stochastic signal models, and subscripts "e" and "s" will be dropped for the

general discussion.

2.3.2 Joint Cost Function

Splitting the modulated quantities into real and imaginary parts is equivalent to

using both real and imaginary parts of the complex modulating function set (2.4) to

modulate the original differential equation model separately. Although it would be
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quite awkward,both real and imaginary parts couldwork independentlyto estimate

the very sameparameter vector 0 using the weighted least square algorithms with

different weights Wn and IV/ through minimizing two different cost functions. In

order to avoid the potential agony induced by this separation, the possibility of using

one joint cost function binding these two parts to produce just one estimate, instead

of two, should be explored. Under the assumption that additive noises n(t) and v(t)

are mutually independent white Gaussian noise, the error sequences eR and el in

(2.56) and (2.57) are uncorrelated as shown in Lemma 4, and then the joint likelihood

function is as follows:

p(£R,£I I 0) = P(¢R [O)'p@I 10)

= _1 l_exp{ 2 }(2rr)_@[W1[½exp{-_ 1vvlleTuz-le ]If
(2r)_ [Wnl 2

= (2r)M+l[Wnl½[W1l ½ .exp - J(O) (2.89)

where

J(O) = 4w_'_R+_Twi-I_,

= (YR- rRo)rw_x(_- rR0)+ (rl - r_o)rwi-l(Y_- r,0)

> 0.

The log-likelihood function t;(0) can be used and

_(0) = lnp(en, eli0)

= -(M + 1)ln2_r-l[lnlWn[+ln[Wil]-lj(o). (2.90)
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If the covariancematricesWR and W_ are known, maximizing £(0) for the maximum

likelihood estimate is equivalent to minimizing the quadratic form of the function

J(O). For this reason,

J(O) = (YR- rRo)rw_'(YR- r,_o)+ (y_- r,o)rwi-l(Y, - r,o) (2.91)

has been selected as the joint cost function for the rest of our studies on SISO systems.

The combined or joint estimate desired should be

O = argmionJ(O ). (2.92)

From the necessary condition of minimization: oa = 0, we have

OJ

O0
- r_w_x(YR - rR0) + rfwF'(Y, - r,0)

= (r,_w_lv_+r_wT'y,)- (r_w_lrR+ rTwi-'r,)o

= 0 (2.93)

which implies

0= {r_w,_'rR+rTw,-lr,}-1•{r_w_Y, + rTwi-_Y,}. (2.94)

In order to have a WLS form like (2.35), further introduce the following combined

notations:

(FR)Fc = FI

Yc=( YR)y_

Wc = ( WR

\ 0

(2.95)

(2.96)

0 ) (2.97)w_ "
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If wedenote

Wc1 = ( W/_10

then it is straightforward to show that

0)W? 1

= {rTw lrn + ryw;'r,}-'. {r w 'yR + rTwi-lyi}

T -1 -1 T=(rcwc re) rcwF1Yc. (2.98)

This result shows that by minimizing the joint cost function (2.91) we still can have a

combined WLS estimate 0 through the combined regressor, regressand and weighting.

This also has provided an efficient way to utilize the information carried in both the

real and imaginary parts of modulated quantities.

Further, we have the following observations about implementing the above scheme:

1. For the regular least squares algorithm, Wc = I, then

= (r rc)-lr yc.

2. For the equation error signal model and measurement noise signal model of

Figure 2.1, two matrix inverses W_ 1 and W/1 are needed for W/1. However,

utilizing the matrix inversion lemma [2]:

(A + BCD) -1 = A-' - A-IB(C -1 + DA-1B)-_DA -1, (2.99)

and letting A = W, B = q, C = I and D = T/T, the special form (2.82) of Wn

becomes

W/_ 1 ---- 2(W -_- 717/T) -1 ---- 20¥-' - W-iv/(1 + TITw-1II)-IT_Tw-1). (2.100)
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Denoting 6, ,/-_a 2 + _Tb_ for the measurement noise signal model (or 6_ =_vT n

v_for the equation error signal model) and A = rlr/rW -1 (with a similar

designation A, and Ae), and partitioning

we have

( , ) w_l_(w,11  2.1o1 7= OM×1 Wnl Wn2 '

It is straightforward to show

(2.102)

2wlll 52Wl12 ) (2.103)= OM×I _-)MxM "

A

W_' = 2W-a(1 1 + 5_wm )" (2.104)

Similarly, we have

W7 a = 2W-1(I +
A

i -- 62wln
). (2.105)

Equations (2.104) and (2.105) indicate that only one matrix inverse W -a is

needed at each iteration.

3. One very important remark that should be reiterated here is the fact that if

WR and W! are not known beforehand, while they may be explicitly expressed

as a function of the parameter 0 such as shown in Lemma 3 and Lemma 4

for the measurement noise signal model, the AWLS/MFT estimate stated in

Algorithm 2 does not lead to the exact maximum likelihood estimate. But
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when the estimated_ through minimizing J(O) is not far away from the true 0,

the estimated I_ should also be very close to the true one as well. This is why the

claim that AWLS/MFT is just an approximated maximum likelihood estimate

has been declared. In order to have a true maximum likelihood estimate, the

maximization should be applied directly to the log-likelihood function (2.90).

The terms like In [WR] and In ]WI] could truely make the computation become

formidable. In this aspect, J(O) is much more attractive.

4. For computational simplicity, one may simply use a single (approximate) real

W as the weighting for both WR and WI in each iteration and neglect the true

updating forms (2.104) and (2.105) caused by the tiny difference between Wn

and WI. As one revealing example to acertain the cost of this simplicity, let us

identify the following second order system:

8

H(s)- s: + 4s + 10" (2.106)

The AWLS/MFT Algorithm 2 will be utilized with and without forms (2.104)

and (2.105) using 100 Monte Carlo simulation runs for each case at each of

several additive noise levels. In order to see the relative difference one to another

on both the mean and standard deviation, define a percent error measure by:

A- II_- _11:, 100%. (2.107)

Here _ corresponds to either the mean or the standard deviation values for

each parameter obtained with the exact weightings as defined in (2.104) and
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(2.105), and _ corresponds to either the mean or the standard deviation values

for each parameter obtained without the exact weightings as defined in (2.104)

and (2.105). The results are summarized in Table 2.1, from which we can see

true para

EXACT

APPROX

EXACT

APPROX

EXACT

8

7.9920

7.9862

7.9661

7.9621

7.9033

s_

0.08105

0.08700

0.15862

0.16976

0.30242

m_n

4.0025

3.9997

3.9795

3.9777

3.9500

4

std

0.04378

0.04579

0.09232

0.09795

0.17236

me.an

9.9970

9.9930

9.9710

9.9688

9.9160

10

std

0.07880

0.08265

0.1424

0.1513

0.29532

APPROX 7.9032 0.33463 3.9503 0.18710 9.9164 0.31104

EXACT 7.5696 0.61485 3.7424 0.33769 9.6179 0.54303

APPROX 7.5373 0.61791 3.7259 0.34017 9.5889 0.55101

EXACT 6.6254 0.95782 3.1916 0.54162 8.7639 0.78983

6.5373

0.55%

APPROX

A

100 Monte Carlo runs:

8.6856

0.39%

1.00141

4.68%

0.55088

2.78%

3.1437

0.60%

0.79628

2.08%

APPROX means using Ws as both WsRand Wsi.without using (2.104) and (2.105).
EXACT means using exact the WsR and WsI as def'med in .(2.104) and (2.105).

NSR

5%

10%

20%

40%

80%

Table 2.1: Comparison between using exact and approximate weighting matrices

that the increased accuracy in using (2.104) and (2.105) has only a slight edge,

i.e., 0.6% in mean and 4.68% in std, over the case without using (2.104) and

(2.105). As for the speed of convergence and computational time concerns, they

do not exhibit any difference. In the rest of this thesis, the results in applying

AWLS/MFT are obtained without using (2.104) and (2.105).
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2.3.3 A Simple Recursive Algorithm for Matrix Inversion

We have seen that one of the major computational burdens is the inversion of an

(M + 1) x (M + 1) weighting matrix needed in implementing the WLS/MFT and

AWLS/MFT algorithms. Numerical experiments show that when the order of the

modulating function set or the model goes higher than 10, the MATLAB's matrix

inverse routine which uses "matrix division" or singular value decomposition would

fail to provide usable answers. Part of the reason is that those routines are not

specifically written to deal with banded symmetric positive definite matrices like our

weightings. The round-off errors could accumulate very fast or the matrix could be

badly scaled, especially when M gets large. With these particular sparse matrix

structures in mind, we hope that we can contrive some algorithm which eventually

avoids direct matrix inversion and also can utilize the sparse structure of the weighting

matrix to improve the numerical accuracy and efficiency.

If the upper-left (k + 1) × (k + 1) sub-matrix of the weighting W is denoted by Wk+l,

we need first to answer the following question:

Provided that W[ 1 is known, is it possible to compute Wk-._l from W; 1

without employing a multidimensional matrix inversion ?

Partition the (k + 1) x (k + 1) sub-weighting matrix Wk+l

Wk+l= B[ ak (2.108)

where Bk is k x 1 column vector and a_ is the (k + 1)-th diagonal element of the

41



weighting matrix W. Due to the symmetric positive definite property, the inverse of

t1_+1 exists and is also symmetric positive definite. If we denote

( Vk Ck) (2.109)W2' = C[ dk

where Vk is a k x k matrix, Ck is k x 1 column vector and dk is the (k + 1)-th diagonal

element of W -1, it follows from the condition

Wk+a-Wk-_, = B T ak " C[ dk

-- Brk Vk + akC T BTck + akdk

_ (Ik 0- 0 1)

that we have four equations:

BTck +akdk = 1 (2.110)

WkCk+ Bkdk = 0 (2.111)

BTvk + a_C T = 0 (2.112)

WkVk + BkC T = Ik. (2.113)

We wish to solve for the three unknowns (Vk, Ck, dk) with (Wk, W[ a, Bk, ak) as knowns.

From equation (2.113) and (2.110) we have

Vk = W_ 1. (Ik - BkC T) (2.114)

1 - BTck
dk - (2.115)

ak

Substituting (2.115) into (2.111):

Wk C_ + Bk
1 - BTck

ak
- 0
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(Wk BkB_ )ck - Bk.
aK ak

So

Ck = -[Wk BkBT]_I. Bk (2.116)
ak ak

This expression for Ck still requires computing a k x k matrix inverse [Wk - Bk_-_kSr]-I

which is not desired. But from the well known Matrix Inversion Lemma,

ck = -[wk BkB[]_:. B_
ak ak

R,.

_ _Wk 1

= - W[ Bk(B k W k Bk--ak)-:BTW[ 1]

I4111Bk BT 1W[: Bk

= -[Ik+ ak- BTW[1Bk j ak

T -1

W[1Bk [1 B k W£ Bk-- -- T -1 ]
ak Bk W£ Bk - ak

Wkl Bk

- T -1
Bk W £ Bk -- ak

(2.117)

Putting this back into equation (2.115) and (2.114) we obtain

1 (2.118)
dk = BTW[: Bk - ak

BkBTW[1 ] (2.119)
Vk = W[:[Ik - B[W[1Bk - ak

Further, by defining a column vector Ak by Ak = W[IBk and a scalar rk = BTW[1Bk,

and combining (2.117) with (2.119) and (2.118), we have the following algorithm for

any positive definite matrix W.

Algorithm 4 (recursive matrix inversion for general weighting) For a known

M x M positive definite matrix W with main diagonal elements {ak}; k = 0, 1, ..., M-

1, its inverse can be computed in the following way:
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I. Initialize index k = 1 and W{ 1 = ±
aO

2. Increment k=k+l and check if k > M or not ? Yes: stop; No: continue•

3. Obtain Bk and ak directly from partitioning Wk as in the right side of (2.108).

._. Compute

5. Form

6. Go to step 2.

Ak = IV[ 1 . B,

Tk = BT" Ak

Ak
Ck -

Tk --ak

= w; 1 A Ar
rk -- ak

1
dk --

Tk -- ak"

Vk Ck)w21 = c[ dk

Therefore, the question of recursive updating W;._l from W[ 1 has been answered.

Following up, we will further take the sparse structure of the weighting matrices into

account, so that the above algorithm can be made more efficient to compute Ak and

rk at each recursion. If the order of the modulating function set is n, from Lemma

2 and Lemma 3 the bandwidth of the covariance would be n. Therefore, except for

k < n, the column k x 1 matrix can be partitioned as

Bk = ( O(k-")×l/)_,×l) (2.120)
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where O (k-'qxl is a (k - n) x 1 zero column vector and _k_"xl is a n x 1 matrix.

,(k-n)×(k-,_)_(k-n)x_ )
Wk--1 = _k,ll J_k,12

,,_(k-,0 x,_)T amx,_k'_"k,12 J_'k,22

Correspondingly

Then it is straightforward to obtain that

Ak =

T k

(2.121)

D(k-n)Xn i_nXl )

J_k,12 " J-Jk
l_nxn l_nxl

1_k,22 " "Uk

'_Tl_nxn_ztnxl
.u k ) z t,k,22 .u k

(2.122)

(2.123)

Armed with these two definitions and Algorithm 4 we are ready to introduce the

recursive algorithm for a banded symmetric positive definite matrix.

Algorithm 5 (recursive matrix inversion for banded weighting) For a known

M x M banded symmetric positive definite matrix W with bandwidth n and main di-

agonal elements {ak } ;k = O, 1, ..., M- 1 , its inverse can be computed in the following

way:

1. Initialize index k = 1 and W_ -1 : 1
ao

2. Increment k=k+l and check if k > M or not ? Yes: stop; No: continue.

3. Obtain Bk and ak directly from partitioning Wk as in the right side of (2.108)

and (2.120).

4. Partition Wk and Bk as (2.121) and (2.120) and compute

_ _k,12 " J'_k
hk : Onxn /_n×l

a_k,22 " z..,,k
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[ _nxl _T Dnxn Br_xlT k = _.t..,k ] lt'k,22

Ak

"rk -- ak

Vk = WZ 1 AkA_"
rk -- ak

1
dk --

7"k -- ak"

5. Form

(Vk Ck)wG = c[

6. Go to step 2.

Remarks on the above algorithm:

1. As only the last n columns of W[ 1 are involved, the maximum inner product

dimension is n instead of k. When k >> n, this is very helpful for the depression

of accumulation errors. Computationally, kn flops for Ak and n 2 flops for rk are

required to update at each recursion.

2. The most computationally-demanding term in updating Vk is AkAT; however, it

only involves the product operations among the elements of the column vector

Ak. Hence, it does not contribute to accumulation errors at each recursion.

3. The total flops required is of order O(M3), which is the same as LU decompo-

sition and Gauss-Jordan elimination methods.

4. When W is Toeplitz, i.e., W = W,, we have two choices:
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(a) Still use Algorithm 5.

(b) Employ Trench's algorithm (see pp 132 of [9]) which only needs O(M 2)

flops. The Trench Algorithm requires the column vector CM and dM to

be obtained first from Durbin's algorithm which is of O(M 2) flops. Note

in Algorithm 5 that if we drop the Vk updating, we also can obtain CM

and dM in O(M 2) flops which is as efficient as Durbin's algorithm. Then

at least we can use the above algorithm to first obtain CM and dM.

5. The bottom line is that numerically the above algorithm is much more robust.

It has successfully inverted a M = 1024, n = 12, Toeplitz matrix while the

routines in MATLAB failed. For AWLS/MFT, it is as efficient as any other

inversion algorithm.

6. One other by-product of the above algorithm is that it facilitates writing a

recursive weighted least squares algorithm, which might not be necessary in

MFT, but it may be of value to other sequentially correlated data analyses.

2.4 Comparing LS, WLS and AWLS with PEM

The second order system: i)(t)+3_j(t)+8y(t) = 5u(t), where 0 < t < T and T = lOsec,

was used to evaluate and compare the performance of the LS/MFT, WLS/MFT

and AWLS/MFT algorithms and to compare with a commercially available PEM

(prediction error method) algorithm [20] in MATLAB written by L. Ljung [21]. Two
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hundred Monte Carlo runs were made at each of severalnoise-to-signalratios for

additive white output noisecorrupted data. The input signalwas u(t) = sin(t_/5),

t E [0, 10] secs for each run and the sampling rate is fixed as 25.6Hz. The output y(t)

is a combination of the simulated output using LSIM() of MATLAB and the white

Gaussian random noise sequence generated by RANDN(), i.e.,

y(t) = LSIM(A, B, C, D, u,t, XO) + n(t)

where [A,B,C,D] = TF2SS(5, [1, 3, 5]), X0 is the initial condition, and n(t) = k •

RANDN(256, 1) is the additive noise with the scale factor k determining the noise

level. In order to have a fair and accurate comparison, every noisy input/output

realization pair has been forced to run through all four algorithms in each Monte-

Carlo trial. The noise-to-signal ratio (NSR) is defined as

NSR = [[n(t)[]--_2. 100% (2.124)
II (t)ll 

which characterizes the percent additive noise on the output. As for a true parameter

_o0 and its estimate _ (with standard deviation a), a normalized bias and standard

deviation are formed as

Normalized Bias = I _-_------_° I • 100% (2.125)
_o

Normalized STD = I_1" 100% (2.126)

These will be used to measure the accuracy of the different algorithms. For the above

specific system, its step response will take about 4 seconds to reach steady state and,
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therefore, for the total 10 seconds of data, the initial condition X0 and the input

could both play an important role. In order to have a better picture of the impact

of initial conditions on the estimation, two cases with and without randomized X0

have been carried out in the following simulation studies.

2.4.1 With X0 Fixed as (0,0)

In this case we assume that the initial conditions are always known as X0 = (0, 0)',

so as not to treat the X0 as an unknown in PEM. In each Monte Carlo run of the

PEM, the initial guess of the parameters is set favorably to the true values as well

as giving it the true value X0 = (0, 0)'. Under this relatively ideal setting for PEM,

the simulation results are summarized in the Table 2.2 ,,_ 2.5 and Figure 2.2 from

which we have the following observations:

1. Although the PEM has a smaller variance than LS/MFT at most noise levels,

especially in the lower noise level cases 7, PEM does have greater variance than

both WLS/MFT and AWLS/MFT algorithms at all the additive noise levels.

The variances in WLS/MFT or AWLS/MFT have been reduced to about one-

third the variance of LS/MFT. Between the standard deviations of WLS/MFT

and AWLS/MFT, the latter has a slight edge over the former only at very large

additive noise levels.

7Fullerton, A. Jr. revealed this fact from his early simulation studies [8]. Our craving of further

curbing this quantity triggered our studies on the WLS/MFT and AWLS/MFT algorithms.
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200 Monte Carlo runs for PEM without estimating X(0), Fbffi0.4Hz, FLxedinitial X(0)=(0,0)'

true parameters

mean

8

8509

3

3.151

5

5.320

variance 0.0171 0.0069 0.0153

mean 8.504 3.155 5.309

variance 0.0775 0.0294 0.0625

mean 8.509 3.146 5.328

variance 0.2695 0.I119 0.2435

mean 8.609 3.201 5.417

variance 0.6306 0.2530 0.5162

mean 8.599 3.181 5.412

variance 1.3089 0.5470 1.1467

Ily(0112ffi6.472

Ue(t)l12=0.822

NSR=12.7%

Ile(0U2=1.664

NSR=25.7%

I1e(0112=3.330

NSR=51.5%

Ile(011=,=4.938

NSR=76.3%

Ile(t)l12=6.660

NSR= 102.9%

Table 2.2: PEM with fixed X(0) = (0, 0)' and initial guess at true values.

200 Monte Carlo runs for LS/MFI" algodthm, Fbf0.4Hz. f_e,d initial X(0)=(0,0)'

true parameters I
mean

8

7.991
3 I

2.988

5

4.983

vadance 0.0294 0.0126 0.0290

mean 7.961 2.960 4.947

variance 0.1350 0.0557 0.1283

mean 7.886 2.872 4.856

variance 0.5144 0.1907 0.4499

mean 7.648 2.698 4.614

variance 0.8119 0.3434 0.7714

mean 7.077 2.347 4.111

vadanc¢ 1.1768 0.4449 1.2680

Ily(0112=6.472

Ile(0U2=0.822

NSR=12.7%

Ue(0112=1.664

NSR=25.7%

Ik_(0112=3.330

NSR=51.5%

Ile(OIIz=4.938

NSR=76.3%

Ile(0112=6.660

NSR=102.9%

Table 2.3: LS/MFT with fixed X(0) = (0,0)' and Fb = 0.4Hz.
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200 Monte CarlorunsforWLS/MFT

true parameters

rueful

8

7.995

algorithm,Fb---0.41-Iz,fixedinitialX(0)=(0,0)'

3 I
2.989

5

4.985

variance 0.0135 0.0049 0.0103

mean 7.977 2.967 4.955

variance 0.0580 0.0228 0.0443

mean 7.859 2.850 4.808

variance 0.2129 0.0877 0.1649

mean 7.696 2.665 4.582

variaace 0A740 0.1731 0.3920

mean 7.306 2.405 4.253

variance 0.4677 0.1779 0.3879

Ily(0112=6.472

Ile(0112=0.822

NSR=12.7%

lie(0112=1.664

NSR=25.7%

I1e(0112=3.330

NSR=51.5%

Ile(t)l12=4.938

NSR=76.3%

Iie(t)l12=6.660

NSR=102.9%

Table 2.4: WLS/MFT with fixed X(0) = (0,0)' and Fb = 0.4Hz.

200 Monte Carlo runs for AWLS/MFr

true parameters

mean

algorithm. Fb=0.4Hz, fixed initial X(0)=(0,0)'

[ 8

7.994

I

3 I
2.990

5

4.986

variance 0.0125 0.0045 0.0098

mean 7.974 2.972 4.959

variance 0.0542 0.0212 0.0428

mean 7.863 2.870 4.833

variance 0.2052 0.0865 0.1620

mean 7.703 2.718 4.630

variance 0.4291 0.1678 0.3523

mean 7.338 2A77 4.315

variance 0A079 0.1610 0.3552

I lly(t)l12=6.472

lle(t)ll:0.822

NSR=12.7%

lle(t)ll2=1.664

NSR=25.7%

lle(t)l12=3.330

NSR=51.5%

Ile(t)U2=4.938

NSR=76.3%

Ile(0112=6.660

NSR=102.9%

Table 2.5: AWLS/MFT with fixed X(0) = (0,0)' and Fb = 0.4Hz.
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Figure 2.2: Normalized Bias and STD plots with X(0) = (0, 0)'
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2. As for the bias concern, LS/MFT, WLS/MFT and AWLS/MFT have obviously

smaller bias than PEM in the lower noise cases, i.e., NSR < 56%. Among

LS/MFT, WLS/MFT and AWLS/MFT, the bias of AWLS/MFT is smaller

than that of LS/MFT at the high noise end.

Overall, under this extremely ideal setup favorable to the PEM, WLS/MFT and

AWLS/MFT have performed significantly better than PEM within the moderate

additive noise range in the sense of variance and bias.

2.4.2 With Randomized X0

In this case, each realization of an input/output pair is implemented with random-

ized initial conditions X0. We assume that the initial conditions of the system are

unknown beforehand, so that X0 has to be estimated in the PEM algorithm while

there is no difference to the MFT algorithms. For each Monte Carlo run of PEM,

the initial guess of parameters was still set to the true values, but with a randomized

initial guess of X0 which has to be estimated by the PEM in the end. Under this

relatively thorny condition for PEM, the simulation results are summarized in the

Table 2.6 ,-_ 2.9 and Figure 2.3 from which we can make the following remarks:

1. PEM has not only failed to achieve a smaller variance than LS/MFT, but also

exhibits unreliability with its frantic-looking mean values. Meanwhile more im-

portantly, there were almost no noticeable effects on the results of the LS/MFT,

WLS/MFT and AWLS/MFT algorithms at all noise levels. This kind of robust-
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200 Monte Carlo runs for PEM while estimating X(0) with randomized initial X(0)

parameters

mean

variance

mean

variance

mean

vm_a.ce

mean

variance

mean

variance

8

9.273

0.6927

10.144

2.9970

9.102

3

3.561

0.3744

4.291

1.1953

3.301

5

5.901

0.7540

6.904

2.4566

5.610

3.4521 15663 2.9923

8.927 3.201 5.508

4.4852 1.1124 2.8240

8.608 3.145 5.339

5.2385 0.8092 2.6997

Ily(t)l12=6.472

Iie(t)l12=0.822

NSR=12.7%

I_t)l12=1.664

NSR=25.7%

lle(t)l12=3.330

NSR=51.5%

Ue(t)l12=4.938

NSR=76.3%

Ue(t)l12=6.660

NSR= 102.9%

Table 2.6: PEM with randomized X(0) and initial parameter guess at true values.

200 Monte Carlo runs for LS/MFT algorithm with Fb=0.4Hz and randomized initial X(0)

true parameters

mean

valance

mean

8

8.008

0.0225

7.948

3

3.000

0.0081

2.959

5

5.002

0.0201

4.942

variance 0.0923 0.0334 0.0932

mean 7.790 2.865 4.787

variance 0.3036 0.1131 0.2717

mean 7.488 2.708 4.577

variance 0.5 972 0.24 11 0.6038

mean 73,41 2.469 4.243

variance 1.0623 0.4029 1.0296

Uy(t)l12=6.472

Ile(t)U2=0.822

NSR=12.7%

Ue(t)ll2=1.664

NSR=25.7%

lie(t)l12=3.330

NSR=51.5%

Ile(t)i12_.938

NSR=76.3%

Ile(t)llr--6.660

NSR=102.9%

Table 2.7: LS/MFT with randomized X(0)' and Fb = 0.4Hz.
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200 Monte Carlo runs for WLS/MFr algorithm with Fb=0.4Hz and randomized initial X(0)

true parameters

mean

8 I
7.981

3 I
3.005

5 I
4.996

variance 0.0125 0.0036 0.0096

mean 7.933 2.977 4.950

variance 0.0392 0.0125 0.0302

mean 7.901 2.965 4.919

variance 0.1304 0.0471 0.0996

mean 7.683 2.834 4.739

0.3013

7.529

0.5969

variance

mean

0.0936

2.664

0.1792variance

0.2541

4.554

0.4907

lly(0U2=6.472

ll¢(t)U:=0.822

NSR= 12.7%

ll¢(t)ll_=1.664

NSR=25.7%

II¢(t)I12=3.330

NSR=51.5%

lle(t)ll:.4.938

NSR=76.3%

II¢(t)I12=6.660

NSR=I02.9%

Table 2.8: WLS/MFT with randomized X(0)' and Fb = 0.4Hz.

200Monte Carlo runs for AWLS/MFT algorithm

tree parameters [ 8 I

mean 7.989

variance 0.0111

mean 7.941

with Fb=0.4Hz and randomized initial X(0)

3 I
3.006

0.0034

2.981

5

4.999

0.0093

4.955

variance 0.0347 0.0109 0.0273

mean 7.890 2.960 4.912

variance k1229 0.0442 _0929

mean 7.668 2.850 4.748

variance 0.2725 0.0857 0.2313

mean 7A97 2.673 4.538

variance 0_456 0.1621 0.4479

I Ily(011r_6.472

Iie(t)llz=0.822

NSR=12.7%

Ile(t)ll:= 1.664

NSR=25.7%

Ile(t)l12=3.330

NSR=51.5%

Ile(t)llz_4.938

NSR---76.3%

Ile(t)l12=6.660

NSR=102.9%

Table 2.9: AWLS/MFT with randomized X(0)' and Fb = 0.4Hz.
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ness to the randomized initial conditions should not be a surprise if we bear in

mind the fact that the MFT itself was originated in a way that the estimation

of initial conditions can be totally avoided through the modulating process.

Hence, even though almost half of the system response is composed with the

transient process, the LS/MFT, WLS/MFT and AWLS/MFT algorithms have

not been thwarted at all.

2. In this case, PEM also consumed far more computing time than all the MFT

algorithms combined, partly due to the two more unknowns introduced by the

initial conditions.

3. Among the MFT algorithms, the WLS/MFT and AWLS/MFT, again mani-

fested improvement through a lower bias and standard deviation.

We have noticed the relatively large bias in the PEM algorithm even in the low noise

cases from the above simulation studies. This could be attributed to the fact that

the PEM was developed in a discrete time framework. Therefore, the conversion

from the discrete time domain to the continuous domain is a must when PEM is

applied to a continuous system. The transformation used for this converting process

could contribute to the noticeably larger bias appearing in these simulation studies.

Another possible cause could be ascribed as the requisite steady state conditions and

long data ensemble of the PEM was not met in our simulation studies.
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2.5 Conclusion

The WLS/MFT and AWLS/MFT algorithms stemming from two different signal

models have been devised and analyzed in detail. Under different assumptions,

WLS/MFT is a maximum likelihood estimator and AWLS/MFT is an approximated

maximum likelihood estimator. When the additive noise in the output is small, then

the estimated parameters and covariance matrix from AWLS/MFT are fairly close

to the results of the true maximum likelihood estimate. Lemma 4 has not only fur-

ther disclosed the insightful relationships among the covariance matrices, but also

paved the way for the numerical implementation of the WLS/MFT and AWLS/MFT

algorithms. The recursive banded-sparse matrix inversion scheme in 2.3.3 provided

a stabler and more efficient method of inverting the covariance matrices. From the

simulation and comparison studies in section 2.4, the WLS/MFT and AWLS/MFT

schemes have improved the previous LS/MFT method in both bias and variance, and

both achieved a smaller variance than the popular PEM algorithm which has the

worst bias results. Meanwhile, the simulations in 2.4 also show that the initial condi-

tions have basically no visible affect on the performance of MFT algorithms, which is

concordant with the theoretical analysis in section 2.1. Again, it has affirmed that the

MFT method is a potent tool to cope with the identification problems using transient

I/O data.
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Chapter 3

Continuous Time Model

Reduction Using AWLS/MFT

Algorithm

3.1 Overview

Simplifying a high order or complex model with a lower order model has been deemed

as one of the most important topics in automatic control, signal processing and other

engineering and science areas. For many complicated high order models, the reduction

not only can significantly facilitate their analysis and design, but also makes the digital

or analog simulation and implementation possible and affordable. In the sense of

approximation, the lower order models should be able to replicate the time domain,
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e.g., impulse responseor step response,as well as frequencyresponse,e.g., Bode

diagram, as closelyto thoseof the high order modelas possible.From the practical

point of view, the following situations are very common in demandingsimplified

models:

1. Given a higherorder system,askreduction.

2. Given a complicated-lookingBode plot, requesta simpler parametrizedmodel.

3. Given an input/output data pair from an unknown-parameterizedhigher or

nonlinearmodel, demanda modelwith a specifiedlowerorder.

During the last two decades,many researchresults on continuous time model re-

duction have been reported [25] [48] [50] [24] [14] [23]. Most of the earlier work,

categoricallynamedas classicalreductionmethods(CRM) [14],hasbeencarried out

basedon classicalmathematical approximation theoriessuchasthe Pad_approxima-

tion [50][48],the continued-fractionmethod,and the time-moment-matchingmethod

[57]. The essenceof CRM schemesis expanding the original system into a Taylor

series about the origin or the low frequencyend, while neglecting the rest of the

frequencyrange. This naturally incurs the possibility of low accuracyin the higher

frequency band and potential lossof stability of the reducedsystem although the

original systemmay havebeenstable. In order to obtain a stable model, manymod-

ified reduction schemes,like the stability-criterion and differentiation methods [23]

can guaranteethat the final low order model is stable by allotting somestable poles
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to the denominator beforehandwhile letting the numerator be determined by the

CRM. Unfortunately, in most cases,the accuracyin this kind of algorithm has fallen

prey to the higher priority of stability. The FF-Pad_(Frequency-fittingcoupledwith

Pad_approximation) method [14]hasbeenproposedto alleviate thesedrawbacksby

fitting the mid-frequencyrange.

Another classof schemesbelongingto the time domainmethods [25] computesthe

parametersof a reducedorder model so as to minimize a certain criterion function

characterizedby the differenceof time domainresponses(typically impulseresponses)

to a given driving signal [25]. A reduction algorithm developedby Sakr and Bahgat

[47] to obtain an optimal reducedorder model for a powerplant hasbeenoneof the

examplesof this kind of time domainapproach.

Stemmingfrom principal componentanalysisandsingularvaluedecomposition,Balanced-

Realization [24] hasprovento bea seasonedorder reduction method in both theory

and practice; it hasbeen commercializedin the popular MATLAB control toolbox.

The Balanced-Realizationschemewasderivedfrom the "signal injection" viewpoint

by characterizingthe relevantsubspacesin termsof responsesto injectedsignals. The

model reduction is doneby eliminating subsystemsassociatedwith small singularval-

ues.

One common ingredient of all the above schemes is that either high order transfer

functions or the state space models must be known in advance in order to carry out

the reduction. This means that they are only used to cope with Situation 1 listed
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earlier.

The Modulating Function Technique(MFT) hasbeennostrangerto this field. In [26],

three nonparametricmodulating function frequencymatching(MFFM) schemeshave

beeninitiated and comparedwith otheralgorithms. MFFM isa two-stepscheme:first

estimate the frequencyresponseof the systemthrough annonparametricmodulating

function algorithm [36]from severalI/O datapairs; secondly,estimatethe parameters

of a reducedorder model by minimizing a frequencymatching criterion. Parametric

LS/MFT hasalso beenresortedto in chemicalsystemreduction [6], though MFFM

outperformedLS/MFT in [26]. With the moresophisticatedAWLS/MFT algorithm

presentedhere,better results areexpectedand will bedemonstrated.

In this Chapter, the AWLS/MFT algorithm statedin the last chapterwill beutilized

to reducethe orders of higher order systems,and the comparisonwill be made with

other publishedresultsand algorithms,especiallywith balancedrealization, FF-Pad_

and MFFM schemes.As a final example,a 12th order powerplant model given by

Sakr and Bahgat [47]is reducedto a 2nd order modeland comparedwith their time-

domain-basedreduction results. The versatility and flexibility of AWLS/MFT will

be addressedin terms of handling the situations listed above. Someimportant key

points of implementation will be mentionedas well.
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3.2 AWLS/MFT and Order Reduction

AWLS/MFT has been developed to tackle continuous time parameter identification

problems based on an I/O data pair. Parameters are obtained through minimizing

a structure-specified time-domain differential equation model error modulated by a

set of known modulating functions. Due to the Fourier type modulating function-

als we have used, both time and frequency domain information has been naturally

concatenated into the joint cost function (2.91). This viewpoint of AWLS/MFT is

close to what model reduction is trying to accomplish. The essence of the two is so

indistinguishable that AWLS/MFT should be able to shoulder the mission of model

reduction. AWLS/MFT was developed as an I/O-data-pair-oriented scheme, which

implies that for a given I/O pair of a high order or complex system (the exactly

paxametrized model of this system might not be available), AWLS/MFT can be ap-

plied to produce a model with a specified lower order. If the transfer function or

state space representation of a high order system is given and a lower order model is

desired, the 1/O data pair can be acquired by driving the original system with a rich

persistent signal, typically a Gaussian distributed random sequence, and simulating

the output with the help of the LSIM routine of MATLAB, so that AWLS/MFT can

then be used. Many mechanical systems or components are often characterized by

weird-looking Bode diagrams attached to them, when they are sent out of the man-

ufacturing or testing sites. If connecting these systems into control loops is desired,

reduced parametrized models have to be acquired first. In this case, the driving signals
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could be formed by frequencies coinciding with the modulating function frequencies

which are decided upon from the Bode diagrams, while accordingly randomizing the

corresponding phases. One judicious way of choosing the phases would be by using

so-called low-noise noise [41] which is accomplished by picking phases minimizing the

fourth moment of the driving sequence. This low-noise noise can smooth out the giant

peaks which might otherwise drive the system into the nonlinear regions of system

operation. (This might not be the case in model reduction.) The resulting low-noise

signal makes the input look like random noise. Gaussian distributed randomized

phases have been utilized in our simulation studies, and the results have been very

satisfactory. Another major concern often encountered in model reduction is whether

or not the reduced order model is stable. This concern can be easily eased with the

stability-constrained AWLS/MFT algorithm described in the previous chapter which

automatically locates all the poles of the resulting model in the stable region.

Technically, the following algorithm-related parameters must be specified before AWLS/MFT

can be applied

Fs : Sampling Frequency

N : I/O Data Length (Number of samples)

Wo : Resolving Frequency = 2_r. Fs/N

wB : Modulating Bandwidth (System Bandwidth Covered by Modulating Frequencies)

M : Maximum Modulating Frequency Index = "integer-part (wB/wo)"

Among the above, wo is the most intrinsic algorithm-related parameter which de-

termines the frequency resolution, especially when accuracy is demanded in the low

frequency range. In some cases in which high accuracy is desired in the middle or

high frequency range, Wo can be set relatively larger so as to alleviate the computation
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burden while preserving good accuracy. This flexibility is exclusively possessed by

MFT-based schemes. From the several examples we are going to present here, the

roles of these parameters will be further illuminated.

3.3 Comparison with Other Methods

In order to provide some quantitative measures of goodness in replicating the original

systems characteristics, the signal-to-error ratios (SER) or S/E are defined, in both

time and frequency domains respectively, as

IIho(t)ll: ],SERf = 20. loglo i]ho(-_)--_-_(t)[12j,

{ llno(j' )ll2 }SER] -- 20. log10 ilHo(jw) _ H_(jw)ll _

in time domain t E [0, Ts] (3.1)

, in frequency domain w E [wa, w2]

(3.2)

where I1 115denotes the L2 norm in the appropriate space, and

ho(t)
h,(t)

Ho(jW) :

:
Ts
021 add CO2 :

time response (e.g., step or impulse response) of original system.

time response (e.g., step or impulse response) of reduced system.

frequency response of original system.

frequency response of reduced system.

time interval of interest (roughly the settling time of the system).

frequency range of interest.

Without specific mentioning, all the dB numbers in the graphs of this chapter should

mean SER or S/E values 1.

1In all six examples, the SERI numbers will be calculated at frequency nodes generated by

the MATLAB routine LOGSPACE(wl,W2,100), where [wx,w2] is the same as the graphic range

appearing in each magnitude or phase plot. Therefore, for the high frequency matching in Example

1 and 2, those SER numbers are less indicative due to less concern about the low frequency range.
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Example 1: As the first exampleof our comparisonstudies,a sixth order low-pass

system:

(s + 2)2. (s + 5)2. (s + 100) (3.3)
Ha(3)= (3+ 100)2

from [26] is chosen to be reduced to a 3rd order model. Using this system, Co and

Ydsti [6] compared the FF-Pad_ algorithm with LS/MFT scheme and found that

LS/MFT worked better than the FF-Pad_ method. In Pan's thesis [26], MFFM gave

a better fit than the LS/MFT scheme with the following low frequency matching

model:

fI1MFF M = 4.523332 + 30.67393 + 45.2871 (3.4)
33 + 51.245632 + 710.23953 + 453.6771

which was obtained through eight-seconds of data at a sampling rate Fs -- 200Hz,

i.e., 1600 simulation points. From MATLAB, the reduced 3rd order model using

Balanced-Realization routine MODRED has been acquired as

5.415632 + 30.94663 + 58.5745

H_-n(3) = s 3 + 65.446132 + 793.18403 + 585.7454 (3.5)

Choosing Fs = 64(Hz), wB = 107r(rad/s) and N = 1024 (resolving frequency: w0 =

0.125r(rad/s) 2) and using a Ganssian random noise sequence to excite the Ha(s),

2In this case, the curvature of the low frequency band is slowly-changing, so that w0 =

0.1251r(rad/s) should be fine enough. If w0 is further reduced by raising N, it will not make any

significant difference. Decreasing w0 by lowering the F, is not recommended by and large, due to

its potential influence on the accuracy in numerical integration. Please refer to Examples 3--_6 in

this Chapter for the cases in which a much finer resolving frequency is required to identify sharply-

changing peaks and valleys in the Bode diagrams.
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AWLS/MFT givesthe low frequencymatchingmodel:

[_IAWL s = 4.7801S 2 + 28.9623S + 50.4280 (3.6)
S3 + 57.8232S 2 + 713.7344s + 502.0671

The Magnitude, phase and step response plots of the models from Balanced-Realization,

MFFM and AWLS/MFT algorithms are summarized in Figures 3.1(a), 3.1(b), 3.2

and 3.3 respectively. In the frequency domain, the three algorithms have very
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Figure 3.1(a): Log-scale magnitude plots of the low frequency matching models.

close SER numbers, though the AWLS/MFT has a slight numerical edge. Graphi-

cally, especially from the linear-scale magnitude plot and phase plot, the AWLS fits

best in the low frequency side (about a 2dB lead). From the step response plots,

Balanced-Realization and AWLS/MFT are better than MFFM while the visual dif-

ference between Balanced-Realization and AWLS/MFT is negligible. Numerically,
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Figure 3.2: Phase plots of the low frequency matching models.
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Figure 3.3: Step responses of the models.

the Balanced-Realization has a very small lead (about 0.5dB).

As mentioned before, MFFT and AWLS are capable of reducing the original system

to a frequency-range-specified low order model through freely choosing the frequency

range to match. Pan [26], with this very same example, manifested this kind of

flexibility and gave a high frequency matching model:

1.4952s 2 + 863.1844s + 5334.4197

HMFFM(s) = Ss + 187.4456S 2 + 11304.2301S + 141250.0129 (3.7)

With F, = 1024(Hz), wB = 100_r(rad/s), N = 256 (resolving frequency: w0 =

8_r(rad/s) 3) and a Gaussian random noise sequence exciting the Hi(s), AWLS/MFT

aLike the low frequency matching, the high frequency band also looks "smooth" in this case, and

the value w0 = 8_r(rad/s) is fine enough. By changing N to make _0 relatively coarser or finer, it
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came up the high frequency (roughly from 87r -_ 100r(rad/s)) matching model:

1.010s 2 + 1003.8802s + 6415.0895

H1AWLS(a) = s 3 + 214.2575s 2 + 12816.7076s + 148767.3293 (3.8)

In order to see the high frequency matching of the MFFM and AWLS schemes

clearly, the frequency responses of the two reduced models are drawn together in

Figures 3.4(a), 3.4(b) and 3.5. Clearly, AWLS/MFT is favored both graph-
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Figure 3.4(a): Log-scale magnitude plots of the high frequency matching models.

ically and numerically. Another aspect we should notice is that AWLS/MFT used

only 256 points, equivalent to 250ms of I/O data, and took practically no time to get

its model, while MFFM used 1600 points which is eight-seconds of data. Therefore,

will not cause any noticeable change. However, if there is a kink in the high frequency range like

Example 2 of this Chapter, a finer w0 is a requisite.
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AWLS/MFT cando high frequencyfitting moreefficiently.

Example 2: We now consider the following sixth order model [26]:

4.5sS+ 16.875034+ 1.2474xlO4s3+ 5.3034XI0482+ 8.0454Xi0% + 3.6556Xi07

H2(s) = s6+ 66.85ss+ 2778.9s4+ 7.1963xlO4s3+ 1.0168xlOas2+ 9.801ix106s+ 4.7306xi07

(3.9)

Pan again used eight-seconds of data and 1600 data points and by weighting the

middle frequency range slightly more, came up with the following reduced third order

model:

3.8121s 2 - 59.6845s + 6913.6012

HMFFM(s) = S3 Jr 42.7534S 2 + 389.3838S + 8388.2031 (3.10)

This model is basically obtained through a high frequency matching, while he did not

provide a low frequency match model in this example. From MATLAB, the reduced

model using Balance-Realization is given by

-5.5419s 2 + 170.4683s + 872.5521

HB-n(s) = s3 + 15.4064s2 + 207.4581s + 1129.1082 (3.11)

Like the last example, we can still exploit the flexibility of MFT algorithms by fitting

different frequency ranges. For a low frequency range, setting F_ = 256(Hz), ws =

2r(rad/s) and N = 1024 (resolving frequency:w0 = 0.5_r(rad/s)), we have

-4.521s 2 + 155.179s + 704.284

!-IAWLS(s) = 83 nt- 14.216S 2 + 196.103S + 914.840 (3.12)

If we change the setting to F, = 1024(Hz), ws = 50_r(rad/s) and N = 1024 (resolving

frequency:w0 = 2_r(rad/s)), the high frequency matching model is obtained as

4.5342s 2 + 5.1391s + 6581.3344

HAWLS(s) -- S3 _- 45.0462S 2 + 385.1122S + 6394.8751 (3.13)
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The performance of these models can be evaluated from Figure 3.6(a), 3.6(b), 3.7

and 3.8. For the low frequency range in the frequency domain, AWLS/MFT leads

balanced-realization numerically (18.11/15.91) and the only difference that can be

observed is that in Figure 3.6(b) Balanced-Realization is off around the peak re-

gion, while AWLS/MFT coheres to that kink. For the high frequency matching,

AWLS/MFT does not have a biased peak like MFFM shown in Figure 3.6(b), while

a magnitude deviation from the original system in the very high frequency raage ap-

peared in Figure 3.6(a). As for that notch concern, AWLS(H)/MFT is much closer

than the other, as seen in Figure 3.6(a); numerically, AWLS/MFT is better as well.

In the step response plots, the [tAWLS(s) has the best numerical result, followed very

closely by the Balanced-Realization scheme. It is no surprise that both of the high

frequency matching models, It2AWLS(s) and HMFFM(s), are not even close to the

true step response, because after the initial shoot-up the step response is primarily

determined by low frequency characteristics of the system. Again, AWLS/MFT took

a much shorter length of data in acquiring the above high frequency matching model.

Example 3: The following sixth order model was the second example used in [14]

to compare with other classical Padb approximation methods:

(1 + 2.0587s)(1 + 2.5529s + 5.4342s_)(1 + 3.2648s + 2.1476s 2)

H3(s) = (1 + 3.0092s + 0.7970s2)(1 + 6.8538s + 0.6965s2)(1 + 0.1394s + 0.6861s 2)

(3.14)

The FF-Padb scheme reduced the above sixth order system into the following third
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order model:

1 - 1.4257s + 4.3109s 2

HFF-Pade(s) = 1 + 0.70038 + 0.861382 + 0.083783 (3.15)

The MATLAB routine of the Balanced-Realization scheme gave the reduced model

as:

110.8197s 2 + 26.4163s + 38.2340 (3.16)
H_-n(s) = s 3 + 26.7135s 2 + 7.4733s + 38.2340

With Fs = 256(Hz), wB = 5r(rad/s) and N = 8192 (resolving frequency: w0 =

0.06257r(rad/s)), AWLS/MFT produced the third order model:

67.360082 + 6.4604s + 18.8969 (3.17)
HAWLS(s) = S3 + 13.777482 + 4.86743 + 18.8969

The frequency and time responses are plotted in Figures 3.9(a), 3.9(b), 3.10 and 3.11.

The AWLS/MFT and Balanced-Realization performed reasonably well, though

AWLS has shown a slight edge in the frequency domain while Balanced-Realization

has led in the time domain. The FF-Pad_ lags far behind numerically and graphically.

Frankly to say, this is the toughest example for AWLS/MFT we have met in all our

model reduction studies in the sense of data length required for a very fine resolving

frequency to identify that narrow valley-peak transition band.

Example 4: Another middle and high frequency range model used in [14] is the

sixth order high-pass system:

1 + 8.8818s + 29.9339s 2 + 67.087s 3 + 80.3787s 4 + 68.6131s 5

H4(s) = 1 + 7.6194s + 21.7611s 2 + 28.4472s z + 16.5609s 4 + 3.5338s 5 + 0.0462s 6"

(3.18)

Using the middle range frequency fitting and Pad_ approximation for the lower fre-
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quency band, FF-Padb had the following reduced third order model:

1 + 2.00988 + 3.716982

HF4F-Pade(S) = 1 + 0.74748 + 0.189882 + 2.497783
(3.19)

It should be noted that this reduced model HFF-Pade(s) is an unstable system, so

that it would be unfair to compare its time domain response with the others. The

Balanced-Realization model reduction scheme laid out its own reduced model as

1551.8019s2 + 554.9813s + 390.9247

H_-n(s) = s3 + 80.3317s2 + 299.7585s + 390.9247
(3.20)

Armed with the F_ = 128(Hz), wB = 27r(rad/s) and N = 8192 (resolving frequency:

w0 = 0.03127r(rad/s)), AWLS/MFT has reduced the H4(s) to

1466.902382 + 342.88458 + 355.4733

HAWLS(s) = 83 "Jr-75.287682 + 281.7353S + 319.1008'
(3.21)

which is a stable system. The frequency domain comparisons are shown in

Figures 3.12(a), 3.12(b), 3.13. The step responses of the Balanced-Realization and

AWLS/MFT systems are plotted in Figure 3.14.

In comparing the frequency domain results for AWLS/MFT and Balanced-Realization

algorithms, FF-Padb is absolutely in no sense a comparable method. Due to the

slightly better fitting of AWLS/MFT around the pass-band peak area appearing in

Figure 3.12(b), AWLS/MFT has a higher SER value. In the time domain response

of Figure 3.14, both methods give almost a perfect match, while AWLS/MFT has a

negligibly small numerical lead.
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Example 5: The last example used in [14] is a complex sixth order system:

1 + 7.7617s + 13.5756s 2 + 67.6016s a + 40.2492s 4 + 144.0994s 5

Hs(s) = 1 + 14.82433 + 75.7619s 2 + 163.2959s a + 139.3768s 4 + 38.6263s s + 3.3282s 6"

(3.22)

The FF-Pad_ method gave the reduced fourth order model:

HFF_Pade(S ) = 1 + 1.1483s + 4.5589s 2 + 5.0011s 3 (3.23)
1 + 8.2109s + 5.2508s 2 + 1.4141s a + 0.200s 4"

Again from MATLAB, the Balanced-Realization scheme gave

50.9400s 3 + 68.1574s 2 - 8.3170s + 116.8597 (3.24)
H_-R(s) = s 4 + 15.9582s 3 + 56.3846s 2 + 114.1988s + 16.8599"

Running AWLS/MET with F, = 32(nz), WB = 27r(rad/s) and g = 4096 (resolving

frequency: w0 = 0.0156;r(rad/s)), the following reduced fourth order system has been

reached:

43.3696s 3 + 3.2472s 2 + 9.1180s + 3.3524 (3.25)
HhAWLS(s) = s 4 -4- 11.5040s 3 + 39.1397s 2 + 39.8916s + 3.1557

The frequency and time responses of all models are presented in Figures 3.15(a), 3.15(b),

3.16 and 3.17 respectively. In this example, even though FF-Padb has a relatively

good fit in the notch part of Figure 3.15(a), the overall AWLS/MET and Balanced-

Realization are still better as shown in Figure 3.15(b) and 3.16, while AWLS/MET

has the closest frequency fitting, especially in the peak area, numerically and graph-

ically. In the time domain, except for the large over-shoot of FF-Padb at an early

stage, they all agree well with the true step response, though the Balanced-Realization

has a slight lead over AWLS/MFT numerically.
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Example 6: As the final example of our model reduction studies, we shall reduce

a twelfth order power plant system arisen in a power generating station [47] to a

non-strictly-proper second order model and compare it with the results stated in [47].

Sakr and Bahgat gave the following transfer function bridging between the output

power and the input disturbance:

684s11-93484.9s I° -1.76 x 10% 9- 3.25 x 10rss- 3.336 x 108s 7

Hs(s) = s'24 16.9s" 4 335.88s1°4 3694.9s9 4 30709ss 4 199002s 7 + 928769s s

-1.944 x 10% 6 - 7.079 x 10% 5 - 1.697 x 101% 4 - 2.71 x 101% 3

43.02 x 10% 5 4 6.81 x 10% 4 4 1.047 x 107s3 4 1.056 × 107s2

-2.80 x 101% 2- 1.703 × 101% - 4.926 x 109

46.344 x 10Ss 4 1.7121 x 10s (3.26)

Based on minimizing the cost function constructed with the time domain responses,

the parameters of a non-strictlyproper 2nd order system isoptimally computed and

thismethod willbe denoted as the S-B scheme in our followingdiscussion.In [47],

the S-B algorithm with steady state constraint seems to give much better results than

the one without the steady state constraint, so that only the reduced model with the

steady constraint will be compared with the AWLS/MFT here. With the steady state

constraint, S-B has reduced H6(s) to

6365.38 - 142182.23

Hs-B(s) = s 2 + 1.4758 4 52.311 + 2718. (3.27)

Using BALREAL and MODRED routines of MATLAB, Balanced-Realization gives

H__n(s ) = -266.884s 2 + 1112.084s- 142495.032 (3.28)
s 2 + 0.5246s + 49.5261
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Setting N = 2048, WB = 2r and Fs = 50Hz (resolving frequency: w0 = 0.0487r(rad/s)),

AWLS/MFT has the reduced model:

H_WLS(s) = 68.477s 2 + 532.948s - 125098.5
32 + 0.5235s + 49.3780 (3.29)

The frequency and time responses of the reduced models are plotted in Figures 3.18(a),

3.18(b), 3.19 and 3.20.
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Figure 3.18(a): Log-scale magnitude plots of the models.

In the time domain, Figure 3.20, where S-B has been the derived, the AWLS/MFT

and Balanced-Realization have accurately located the impulse response of the original

system, while the impulse response from the S-B model is dying out too fast and its

discrepancy from the true system is obvious, both visually and numerically. From

the frequency response plots, Figures 3.18(a), 3.18(b) and 3.19, the AWLS/MFT _nd
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Balanced-Realization also score significantly higher than the S-B scheme. Between

AWLS/MFT and Balanced-Realization, the AWLS/MFT has better SER numbers

in both the frequency and time domains, though the graphical difference is almost

invisible. Overall, the poor performance of the S-B method is mirrored in front of the

AWLS/MFT and Balanced-Realization schemes.

3.4 Concluding Remarks

From the first two examples, AWLS/MFT did show the promising improvement over

the MFFM schemes in both accuracy and data source efficiency, especially when high

frequency matching is desired. The FF-Pad_ method has been compared with the
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AWLS/MFT and Balanced-Realizationalgorithms in three examplesand has failed

to prove that it is a competitive alternative to thesetwo algorithms. Meanwhile, the

FF-Pad_still facesthe possibility of the resulting modelbeing unstable. In the final

example,the S-Bmethodwasalmostafiascorelativeto theresultsof the AWLS/MFT

and Balanced-Realizationalgorithms. The Balanced-Realizationhasbeenutilized in

all the examplesand it hasheld quite a good stance in both the time and frequency

domains. It is safe to say that the AWLS/MFT algorithm is working at least as well

as the Balanced-Realization scheme due to the fact that in the frequency domain

the AWLS/MFT has more or less an edge (larger SER numbers) over the Balanced-

Realization, while in the time domain they both share a tiny numerical lead one

way or another. One interesting point that should be noted regarding the Balanced-

Realization scheme is that model reduction is just a very narrow application of the

Balanced-Realization technique. Quoting from [24]:

"the relationship between general model reduction and reduction by sub-

system elimination is not well understood".

This somehow is reminiscent of the vagueness of applying AWLS/MFT to model

reduction problems. Even though it was developed as a parameter identification al-

gorithm, the AWLS/MFT has shown in the above examples that it can indeed fulfill

the mission of model reduction. The Balanced-Realization method takes almost no

time to perform the model reduction, while the overall time (including synthesizing)
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of AWLS/MFT is ranging from no time to 6 seconds in above examples 4, which does

not pose any formidable threat to its practical usage. The limitations of the Balanced-

Realization reduction scheme compared with the MFT methods include: (i) although

its results fit the low frequency range well, it lacks the flexibility of choosing the fre-

quency range to match models as is possible in the AWLS and MFFM methods; this

is demonstrated in the first two examples, and (ii) one premise of applying Balanced-

Realization is that the original exact state space or transfer function model must be

known beforehand. In this sense, AWLS/MFT algorithm has injected some sort of

versatility into the model reduction technique. We have successfully tried to use the

Bode diagrams of the above example models instead of analytical high order trans-

fer functions as the start point to approximate these Bode diagrams with specified

(low) order models and found that the results are almost identical with those started

with high order transfer functions. This underscores the flexibility and versatility

of AWLS/MFT in model reduction as one of the major features that could make it

stand out among its peers.

4This is directly related to the resolving frequency used in reduction. Usually the high frequency

matching takes much less time than the low frequency matching reduction.
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Chapter 4

Parameter Estimation of MIMO

Systems Without Pole Constraints

4.1 Introduction

Consider a multi-input and multi-output (MIM0) continuous time system given by

the following transfer function form:

y(s) = H(s)u(s) (4.1)

where u(s) is a pl x 1 transformed input vector, y(s) is a p: x 1 transformed output

vector, H(s) is a Pl x p2 transfer function matrix with (k, q)th element

Bkq(s) (4.2)
hkq(s)=

and (Bkq(s), Akq(s)) are coprime polynomials in s. Similar to the notation of the SISO

cases in Chapter 2, denote Okq as the parameter vector formed by the coefficients of
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the Akq(S) and Bkq(s) polynomials, e.g., for an n th order polynomial:

n-1
Akq(S) -- S n if" akq,lS q- " " " -4- akq,n

and a (n - 1) th degree polynomial:

Bkq(s) = bkq,as '*-1 +...-4- bkq,n

then

Okq

--akq,1

--akq,n

bkq,1

bkq,n

(4.3)

Our goal in this Chapter is a systematic procedure of using or extending the modulat-

ing function technique (MFT) to estimate the totality of parameter vectors 0kq based

on the input-output data pair {u(t),v(t)}, t E [0, T]. As discussed previously, the

order n is presumed chosen beforehand. In practice, this order may be determined by

re-solving the identification for increasing orders, starting from an initial value, until

the residuals and/or SER's values are sufficiently small and/or large.
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4.2 Parameter Identification of MIMO Systems

Using AWLS/MFT

4.2.1 Regression Form of Modulated MIMO Systems

Considering the k th output yk(s), we have

v, Bkq (s)

yk(s) = Y_ Akq(s)uq(s). (4.4)
q=l

Denote ,4k(s)as the least common multiple of {Akl(S),...,Akp,(S)} and

Bkq(s). fi, k(s) (4.5)
&q(s ) = Akq(s------_

Then a modulatable higher order differential operator form of equation (4.4) can be

written as

Pl

_ik(p)yk(t) = Y_ [tkq(p)uq(t) (4.6)
q=l

a Using a similar notationwhere argument p represents the differential operator p = _-/.

and adding the error terms to fit in the identification framework, system (4.1) is then

represented in the modulatahle differential form:

{ AI(P)Yl(t) = E_I "Blq(P)ttq(t) "Jr" el(l_)

: (4.7)

,_(p)yp2(t) pl e,_(t)= Eq=, K.(p)u_(t) +

Letting {ilk; k = 1,2,-.. ,P2} be the corresponding orders of the polynomial set

{Ak(P); k = 1,2,...,p2} and {0k; k= 1,2,...,p2} the parameter vectors compris-

ing the coefficients of the polynomials {,4k(s),/_kq(s); q= 1,2,''',pl} as in (4.3),

k = 1,--',p2, apply the complex form of the modulating function set (2.6) of orders
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{ilk; k = 1, 2,... ,P2} successively to the above equations. Notice that these models

are overparametrized (in general) due to the cross products of the underlying polyno-

mials comprising the hkq(s). Similar to the SISO case in Chapter 2 (see (2.12), (2.13)

and (2.14)), (4.7) could be modulated into the following regression set:

(4.8)

If further we denote by {/l:/k ; k= 1,2,.-. ,p_} the highest modulating frequency index,

then each error vector _k in (4.8) is of dimension (-_/k + 1) × 1.

Remark: Here we need to indicate that this problem will be solved as P2 distinct

2-stage problems: (i) obtain the {0k; k= l, 2,... ,P2} for the over-parametrized mod-

els, (ii) reduce each over-parameterized model to the original Okq through the model

reduction scheme discussed in Chapter 3.

4.2.2 Joint Likelihood Cost Function

For simplicity, we first look at the cases when {_k, Fk, Y_,; k= 1,2,... ,P2} are reaP.

If the error sequences {_k "_ Af(0, l_k); k = 1, 2,... ,P2} are mutually independent of

each other, then the joint likelihood density function can be written as

v2 _2 1 ex _ 1 ~T ~ - 1 -

Y[ P(_kltik) = YI . P{ 2 ek W; ck}
k=l k=l

r,2 1 1 -

=kl"I (2_r)(M_+O/_liTVkl_/2exp{--_(Yk - Fk_k)T_vkl(_/'k -- FkOk ) }

1This results by using only the real or imaginary part of the modulating function set to modulate

(4.7)
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_ 1 1 -
- (2_)(_1+...+M_+p_)/_1¢¢1ii/_".. i-ix/_xpI--_J(el,'% ", _p2)).(4.9)

The log-likelihood £(01,"', Op2) can be written as

Z:(_l,... ,#_2)
P2

= ln{1- I P(gklOk)}
k=l

1

-- tc(]_Vl,..., _'rp2 ) - _. J(O1,'",Op2) (4.1o)

where J(01,"" ,0p2) is a quadratic function

P2

J(0_,'",0p:) = __,(Yk - r'kok)wlfvk_(Yk -- ['kOk) (4.11)
k=l

> 0

and

P2

v, 1 E in ii_k["1.(p2 + Y_ 117/k1• ln(2rr) -
k=l k=l

(4.12)

If the {ff'k ; k= 1, 2,... ,P2} are known, then maximizing the log-likelihood function

(4.10) is equivalent to minimizing the quadratic function J(_l,"" ,t)v2), and in this

case the minimizing parameter set:

(01,... ,Opt) = arg min J(O,,... ,Op2 ) (4.13)

will lead to the maximum likelihood estimate of the parameter set {0k ; k = 1,2,-.., p2 }.

Regarding the two signal models, i.e., the equation error model and the measurement

noise signal model, a few comments could be made here:

° For the measurement noise signal model without input additive noise, i.e.,

{vq(t) = 0;q = 1,2,... ,pa} in Figure 4.1, the condition that the {[k "_ Af(0, 'Wk);
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Figure 4.1: MIMO measurement noise signal model.

k = 1,2,-.. ,p2} 2 are mutually independent is automatically met; hence, (4.10)

is the desired joint cost function. Using Lemma 4 of Section 2.3 which guaran-

tees that the real and imaginary parts of ek are uncorrelated, the terms in (4.11)

can be directly adjusted to the combined forms (see Equations (2.95),-,(2.97)) as

discussed in the implementation Section 2.3. Neglecting the function _(1_1, • • •, l_p2)

for computational expediency, the result from (4.13) is, again, just an approxi-

mated maximum likelihood estimate. In reality, the additive noise level in the

inputs of many physical systems is significantly lower than that in the outputs.

One typical example is the flight data of an F-18 jet aircraft where the inputs

include longitudinal pilot stick deflection, lateral pilot stick deflection, horizon-

2Similar to Equation (2.45) in the SISO measurement noise signal model, all terms involving the

{_3q(t) ; q= 1,2,.-. ,Pz} vanish.
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tal rudder deflection,horizontal tail deflectionand left/right aileron deflections;

theseare basically free from noise, but the outputs are quite contaminated.

Therefore,the focusof our studieswill bemainly devotedto this case.

2. When the input additive noises in the measurementnoise signal model of

Figure 4.1 are non-zero, i.e., {vq _ 0,q = 1,2,... ,Pl}, the error sequences

{_k; k = 1, 2,... ,P2} are generally correlated and, in this case, it is no longer

appropriate to claim that the result is still an approximated maximum likelihood

estimate. Nevertheless, the estimate from (4.13) might still be acceptable.

Heretofore, (4.11) will be utilized as a general joint cost function for the MIMO

parameter identification problem. As discussed in relation to Lemma 2 and 3 of

Chapter 2, the covariance matrices usually can be decomposed as

= k = (4.14)

where {a_; k = 1,2,..., P2} are the variances of the equation error noise or additive

output measurement noise, and {12dk; k = 1,2,...,p2} are explicitly only related

to the binomial coefficients, unknown parameters and modulating frequencies (see

Section 2.2.2 and 2.2.3). We assume that the forms or shapes of the probability density

functions of the noises are given. In most practical problems, neither the variance of

the additive noises nor their probability density functions are known exactly. Usually

an assumption can be made about the distribution of noises, but not their variances.

In this case, introduce non-negative constants {vk ; k= 1, 2,... ,p2} and modify (4.11)
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to

P2

J(t?l," • • ,0p2) = _ uk(IYk -- I'kt_k)Tw___._-I(IYk -- I'k0k) (4.15)
k--1

where the unknown {a_, ; k=l,2,...,p2} are absorbed into the {uk; k=l,2,-..,p2}.

These will be determined along with the parameters in the algorithm to be proposed

below.

4.2.3 Decomposability of MIMO Into MISO Models

As indicated in the title of this Chapter, our discussion will be carried out only under

the assumption that {0k; k = 1,2,... ,P2} are independent one to another and no

constraints are attached to them. From the necessary condition of minimizing (4.15):

OJ(O1," "" ,0p_) = _2_,k_kTW_-l(_k _ I'k0k) ---- 0 (4.16)

00k

we obtain

0k = (FT _____W_-IFk)-IFT -___W;1Yk. (4.17)

This result shows that the kth estimated parameter vector 0k is only determined

by the output of the kth channel of the MIMO system and by the totality of the

inputs {uq(t) ; q= 1,2,--. ,pa}. The important conclusion that can be drawn from the

above is that the parameter estimation problem for a pl-input-and-p2-output (MIMO)

system can be decomposed into a total of P2 independent MISO sub-problems, if the

joint cost function (4.15) is employed.

Under the assumption that the output additive noises {nk(t) ; k= 1, 2,... ,P2} are mu-

tually independent white Gaussian processes and the input additive noises {vq(t) ; q =
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1,2,... ,Pl} are of zero variance (or significantly smaller than the variancesof the

output noises), the AWLS algorithm derived in Chapter 2 can be almost directly

applied to obtain an approximatemaximum likelihood estimateOkfor the kth MISO

sub-system {A.k(s),/)kq(s); q= 1,2,...,pl}. Moreover, only those elements in the

parameter vector _}krelated to the denominator polynomial .4k(s) will be involved in

the adaptive iterative procedure.

4.2.4 Reduce from {ftk(s),Bkq(s)} to {Akq(s),Bkq(s)}; q = 1,.. ",pl

As mentioned earlier, our ultimate goal is to estimate the coefficients {Okq; q =

1,2,''',pl} of the original coprime pairs {Akq(s),Bkq(s) ; q= 1,2,...,pl} which are

not directly modulatable; instead, we have formulated a joint cost function for es-

timating the 0k for higher order modulatable pairs {fik(s),[3kq(S);q= 1,2,''-,pl }.

Therefore, a model reduction problem will be confronted in the process of going

from {Ak(s),/)kq(s); q = 1,2,...,pl} to the lower order pairs {Akq(s),Bkq(s); q =

1, 2,-.. ,Pl}. Even though there is a little bit of reluctance to admit it, this actually

is the very reason that triggered our studies on model reduction problems summa-

rized in Chapter 3. From the six examples in Chapter 3, AWLS/MFT is known

to be successful in reducing some weird-looking high order systems into lower order

models with accuracy at least equal to the seasoned Balanced-Realization model re-

duction scheme. As another typical application, the model reduction required from

{Ak(s),/)kq(s) ; q=l,2,.-.,pl} back to {Akq(s),Bkq(s); q=l,2,...,pl} will be con-
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ductedusingthe AWLS/MFT schemesin our upcomingnumericalsimulation studies.

4.2.5 Overall Procedure of Estimating MIMO Systems

After these discussions, we propose the following procedure of using the modulating

function technique (MFT) to estimate the parameters of a MIMO system, provided

the system structure of each hkq(s) be known:

1. In regards to the unmodulatable original MIMO system model (4.4) with its

polynomials

{Akq(s),Bkq(s); q= l,2,...,pl ; k=l,2,..-,p2}

focus on the higher order modulatable MIMO system model (4.6) with its

polynomials

{Ak(s),Bkq(s) ; q= l,2,"" ,pl ; k= l,2,. . . ,p2}

which are obtained by multiplying both sides of (4.4) with the least common

multiple polynomial {Ak(s) ; k= 1,2,... ,P2}.

2. Select a set of nonnegative weights {vk; k = 1, 2,... ,p2}, and utilize the joint

cost function (4.15) thereby decomposing the MIMO system

{.4k(s),[3kq(S); q=l,2,.-.,pl ; k=1,2,.-.,p2}

into p2 sets of MISO sub-systems {_4k(.9),[3kq(s); q= 1,2,''',pl}.

3. Initialize the index k = 1.
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4. Apply AWLS/MFT to the kth higher order sub-system {,2,k(s),/3kq(s); q =

1,2,..., Pl } and get its approximate maximum likelihood estimate 0k.

5. Using the AWLS/MFT model reduction technique of Chapter 3, convert 0k back

into {Okq;q=l,2,... ,Pl} with following steps:

2

(a) Inject the qth input uq(t) into the estimated q,h higher order model hkq(s)

with the MATLAB simulation routine to obtain _kq(t), i.e.,

*_ %

_)kq = LSIM(Bkq, Akq, uq( t ), Tsq),

Hence, we have acquired an I/O data pair {uq(t),_kq(t)} for the SISO

system hkq(s).

(b) Estimate Okq for the pair (Akq(s),Bkq(s)) using AWLS/MFT and the I/O

data pair {uq(t),_kq(t)} from (a). Keep the original algorithm related

parameters (wo,wS) as used in Step 4.

6. k = k + 1; if k > p2, stop; otherwise go back to step 4.

4.3 Numerical Simulation Results

Due to the decomposability under the joint cost function J(01," "", 0p2), it is only nec-

essary to undertake numerical experiments with MISO systems. Meanwhile for con-

venience, the index k will be dropped from our previous notations for the MISO sub-

systems, i.e., modulatable {2,(s),/3q(s); q= 1,2,..., pl } or unmodulatable { hq(s); q =
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1,2,... ,Pl} will be sufficient to representa MISO system.But first, somepotential

problemswe might facewill be stated.

4.3.1 Several Possible Combinations of {A(s),Bq(s)}

Questions will naturally arise like whether or not large discrepancies in gain and

frequency bandwidths among the {hq(s); q = 1,2,--. ,pa} will cause some kind of

frenzy in terms of accuracy. For the modulating function technique, it could be a

major concern that choosing the maximum modulating frequency index M based on

the maximum bandwidth among {hq(s) ; q= 1, 2,... ,Pa} might degrade the estimate

for those hq(s)'s with relatively narrow bandwidths. When the only available output

is corrupted with additive noise, the impact on the hq(s)'s with smaller gains could be

devastating. In order to explore these potential difficult combinations, five 2-input-

and-single-output systems {hq(s) ; q = 1,2} will be simulated in our numerical studies.

These are configured as follows:

1. Roughly the same gains and frequency bandwidths between ha(s) and h2(s);

2. Roughly the same gains but different frequency bandwidths between hi(s) and

h_(s);

3. Roughly the same frequency bandwidths but different gains between hi(s) and

4. hi(s) has a higher frequency bandwidth and a higher gain than h2(s).
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5. hi(s) has a higher frequency bandwidth but a lower gain than h2(s).

4.3.2 Setup of Numerical Simulations

Two hundred Monte Carlo runs are going to be carried out at each of several noise

levels for each of the five systems mentioned above. The driving inputs ul(t) and

u2(t) are two Gaussian random sequences generated through the MATLAB routine

RANDN() which is basically a white noise generator. Using the linear system simu-

lation routine LSIM(), the outputs of hi(s) and h2(s) can be simulated symbolically

as

yi(t) = LSIM(hl(s),ui(t),t); (4.18)

y2(t) = LSlM(h2(s),u2(t),t); (4.19)

Then a single output y(t) available for identification purposes is synthesized through

superposing yl(t) and y2(t) as

y(t) = y (t) +
_(t)

= _(t) +n(t) (4.20)

where 9(t) represents the noise-free (ideal) single output and n(t) is the additive noise

formed as

n(t) = E. STD(yl(t)) • RANDN(); (4.21)

where the MATLAB routine STD() returns the standard deviation of y_(t) and the

constant E controls the amplitude of n(t). In order to see the affect of additive noise
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on each subsystem, two noise-to-signal ratios (NSR) are defined as

II (t)ll . lOO%,
NSRi = [_

i- 1,2. (4.22)

When K: in (4.21) is zero, which means no additive noise to the single output y(t),

the two drivings ul(t) and u2(t) will be realized independently for each Monte Carlo

run. This kind of simulation will evaluate the performance of the algorithm in rather

ideal situations. But another approach will be adopted here if/C # 0. Thus, n(t) will

be realized independently in each Monte Carlo run, while the two inputs Ul(t) and

u2(t), generated independently by RANDN() beforehand, will remain intact during

the whole ensemble of Monte Carlo simulations. In this way, the noise levels NSR1

and NSR2 on y_(t) and y2(t) will remain basically unchanged during the 200 Monte

Carlo runs. This arrangement not only facilitates our focus on the "reactions" of

h_ (s) and h2(s), but also makes some cross comparisons of the five examples possible.

Like before, the time domain performance of the estimated models can be evaluated

by the signal-to-error ratio (SER) which is specified as

{ 11#(t)112 } (4.23)SER = 20. logi0 tiC(t)-  (t)ll 

where _(t) is the simulated output based on the estimated parameters driven by

u,(t) and u2(t). Note that each SER number will be a random number due to the

randomness of n(t) so that its mean and standard deviation will be given as a pair

of numbers (roSEn, aSEn) in our final numerical tables as determined from the 200

Monte Carlo runs. Let _k be the kth element of the estimated parameter vector 0 and
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07, as the kth element of the true parameter vector 0%

quantities,

and

Two additional normalized

normalized bias NB(%): NB = ]o_- 0kl. 100%
o_

normalized standard deviation NSTD(%): NSTD = a°k I • 100%
o7,

which characterize the accuracy in parameter space, will be plotted and compared,

besides tabulating the mean (0k) and variance (a02k) for each estimated parameter Ok.

For all five systems, the running parameters of MFT are chosen as follows:

• sampling frequency: fs = 25.6Hz

• number of data points: N = 512; time interval: T = 20s

• resolving frequency: fo = 0.05Hz or wo = 0.314(rad/s)

• modulating frequency bandwidth: fB = 0.5Hz or ws = 3.142(rad/s)

• maximum modulating frequency index: M = 10

4.3.3 Numerical Experiments

Example 1: Consider the two input and single output system

y(8) --" hl(S)Ul(S) + h2(8)_t2(,s)

5 6 lou2(s). (4.24)s 2 + 3s + 8 ul(s) + s 2 + 4s +
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The Bode diagrams of h,(s) and h2(s) are plotted in Figure 4.2 from which we can

see that hi(s) and h2(s) have rather similar bandwidths and gains. Two hundred

Monte Carlo run results are listed in Table 4.1 from which we can see that if there

is no additive noise, the algorithm can give an almost perfect estimate, and in this

example NSR1 and NSR2 are roughly in the same range in each of the different

noise levels. The normalized bias (NB) and normalized standard deviation (NSTD)
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Figure 4.2: Bode diagram of hi(s) and h2(s) in Example 1

computed from the table are plotted in Figures 4.3 and 4.4 respectively from which

it seems that the influence of the additive noises on hi(s) and h_(s) are relatively the

same, though hi (s) has a slightly smaller bias. This case will be used as a reference

in the following comparisons.
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true0

In

hi(s)

5

4.9957

m"

10

9.9986

0-2 0.00001 0.00002

m 5.0033 9.9966

0"2

m

0"2

m

0.00238

5.0581

0.01723

5.1770

0.08889

3 8

3.0022 7.9975

0.00000 0.00001

3.0078 7.9983

0.00122 0.00341

3.0245 8.0606

0.00770 0.02462

3.0747 8.2181

0.04878 0.12089

h2(s)
6 4

5.9965 4.0047

0.00002 0.00001

6.0045 4.0179

0.00744 0.00385

5.8998 3.9530

0.05194 0.02939

5.5613 3.6837

0.30429 0.15721o-2

0.01615

9.8033

0.13041

9.3342

0.56263

NSR, ms_

NSR2 (Ys_

0% 57.92dB

0% 1.567dB

5.22% 42.57dB

4.37% 2.912dB

9.99% 35.17dB

8.367% 3.630dB

19.48% 28.1 ldB

16.31% 4.345dB

mean value. 02: variance, NSR: noise to signal ratio. SER: signal to error ratio.

Table 4.1: Numerical results of 200 Monte Carlo runs for Example 1

Example 2: As the second example, consider the two input and single output system

y(s) = hl(S)Ul(S) _- h2(s)u2(s)

5 3
/ \ + U2(,S). (4.25): + 3s + 8ul:J : + 42+ 10

The Bode diagrams of hi(s) and h2(s) are plotted in Figure 4.5 from which we see

that the gain of h2(s) has been reduced from 0.6 to 0.3 while their bandwidths are

still roughly the same. The results of 200 Monte Carlo runs are listed in Table 4.2,

and the normalized bias (NB) and normalized standard deviation (NSTD) computed

from the table are plotted in Figures 4.6 and 4.7 respectively. Bearing in mind the

corresponding relationship between NSR1 and NSR2 at each additive noise level in

this case

relationship between NSR1 and NSR2

noise level 1 level2 level3 level4

NSR_ 0% 5.03% 9.62% 21.31%

NSR2 0% 8.04% 16.10% 35.68%
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true 0

ITI

n hi(s)

5 3

4.9959 3.0025

o': 0.00001 0.00000

m 5.0081 3.0122

O-2

m

o-2

m

0.00152

5.0574

0.00928

5.0835

0.00077

3.0250

0.04719

0.00506

3.0151

0"2

m: mean value. 02: vmance,

0.02565

8

7.9976

0.00001

7.9988

0.00255

8.0395

0.01314

8.0728

0.07674

3 I
2.9980

0.00001

2.9959

0.00449

2.8461

0.03091

2.6022

0.11289

hE(S)

4 10

4.0043 9.9986

0.00002 0.00005

4.0144 9.9693

0.00845 0.04110

3.8204 9.4784

0.05747 0.27343

3.4532 8.8351

0.22820 0.79176

NSR: noise to signal ratio, SER: signal to error ratio.

NSR, ms_

NSR2 Os_

0% 57.89dB

0% 1.525dB

5.03% 42.50dB

8.43% 3.089dB

9.62% 34.27dB

16.10% 4.017dB

21.31% 27__ldB

35.68% 4.328dB

Table 4.2: Numerical results of 200 Monte Carlo runs for Example 2
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and comparing with Example 1, we have the following observations: (i) Without

additive noise in y(t), both hi(s) and h2(s) can be accurately identified; (ii) The

NSTD numbers and NB numbers for h2(s) have increased by 1% ,,_ 2% and 3% ,-, 4%

respectively at each noise level, which could be ascribed to the relative larger NSR2;

(iii) Note that the corresponding NSTD and NB numbers for ha(s) have decreased

by roughly 1% ,,, 2% at each noise level. These inverse trends for hi(s) and h2(s)

exaggerate the contrast in the NB and NSTD plots relative to those in Example 1.

Example 3: As the third example, we consider the system

v(8) = h1(8) 1(8)+

5 .6
[ \ + [ \ (4.26)

8 2 -_- 38 31- 8 III_S) 8 2 "11" 28 + 1 u2_8)"

The Bode diagrams of hi(s) and h2(8) are plotted in Figure 4.8

true 0

In

5

4.9940

h (s)

3.0014

8

7.9967

h2(s)

I 0.6 2

0.5998 1.9997

1

0.9996

o-2 0.00001 0.00001 0.00001 0.00000 0.00002 0._

m 4.9970 3.0051 7.9911 0.5976 1.9928 0.9967

O'_ 0.00120 0.00070 0.00172 0.00017 0.00190 0.00036

rn 5.0039 3.0070 7.9761 0.5893 1.9654 0.9859

02 0.00479 0.00282 0.00703 0.00072 0.00787 0.00144

m 4.9973 2.9924 7.9018 0.5575 1.8621 0.9468

0-2 0.01502 0.00918 0.03589 0.00293 0.03144 0.00527

m: mean value, 02: variance, NSR: noise to signal ratio, SER: signal to error ratio.

from which we see

NSR1 ms_

NSR2 Os_

0% 57.74dB

0% 2.070dB

5.26% 43.34dB

9.04% 2.754dB

10.02% 37.25dB

17.21% 2.823dB

19.11% 30.76dB

32.83% 2.978dB

Table 4.3: Numerical results of 200 Monte Carlo runs for Example 3

that h2(8) has a noticeably lower frequency bandwidth while they have roughly the
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Figure 4.8: Bode diagram of h,(s) and h2(s)in Example 3

same steady state gains. The results of 200 Monte Carlo runs are listed in Table 4.3,

and the normalized bias (NB) and standard deviations (NSTD) computed from the

table are plotted in Figures 4.9 and 4.10 respectively. Again, an almost flawless

estimate has been obtained when NSl_ = 0. Because of the narrower bandwidth, the

mapping relationship between NSR1 and NSR2 is changed to the following:

relationship between NSR1 and NSR2

noise level 1 level 2 level3 level4

NSR1 0% 5.26% 10.02% 19.11%

NSR2 0% 9.04% 17.21% 32.83%

Like Example 2, the noise level imposed on h2(s) is almost doubled. But unlike

Example 2, the following two astonishing observations with respect to Example 1 can

be made from Figures 4.9 and 4.10: (i) Contrary to intuition, NSTD and NB numbers

of h2(s) axe very similar to and even slightly smaller than those in Example 1. This
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implies that narrowing the bandwidth of system h2(s) does not worsen the quality

of the estimate for h2(s) at all, though this narrowing is equivalent to increasing

the additive noise to it; (ii) For system hi(s), its NB values has been decreased

dramatically and its NSTD numbers are also down roughly to half of that in Example

1. Another important phenomenon in our Monte Carlo simulation processes is that

the iteration steps required for convergence of the AWLS/MFT algorithm in this case

are noticeably fewer than those cases in Example 1 and 2 where both bandwidths are

close to each other. Apparently the AWLS/MFT is responsible for all of these.

Example 4: As the fourth example, we consider the system

5 .3
Ul(S) + / \ (4.27)

s 2 + 3s + 8 s 2 + 2s + 1 u2_s)"

The Bode diagrams of hi(s) and h2(s) are plotted in Figure 4.11

true0

ITI

hi(s)

3

3.0018

I 8

7.9970

0.3

0.2999

h2(s)
2

1.9998

1

1.0000

o'2 0.00001 0.00000 0.00001 0.00000 0.00006 0.00001

m 4.9984 3.0047 7.9895 0.2955 1.9695 0.9889

Cy2 0.00078 0.00049 0.00158 0.00014 0.00649 0.00110

m 5.0072 3.0065 7.9655 0.2822 1.8799 0.9558

o_ 0.00393 0.00268 0.00693 0.00081 0.03339 0.00586

m 4.9888 2.9920 7.8795 0.2504 1.6642 0.8847

0"2 0.02164 0.01136 0.04158 0.00397 0.16048 0.02595

m: mean value, 02: variance, NSR: noise to signal ratio. SER: signal to error ratio.

from which we can

NSR_ m_

NSR2 Ers_

0% 57.11dB

0% 1.986dB

5.03% 43.52dB

17.30% 2.729dB

10.10% 36.65dB

34.72% 3.322dB

20.04% 29.41dB

68.85% 3.938dB

Table 4.4: Numerical results of 200 Monte Carlo runs for Example 4
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see that h2(s) has not only a noticeably lower frequency bandwidth, but also a smaller

steady state gain. The results of 200 Monte Carlo runs are listed in Table 4.4, and

the normalized bias (NB) and standard deviation (NSTD) computed from the table

are plotted in Figures 4.12 and 4.13 respectively. In this case, the correspondence of

NSR1 and NSR2 is

relationship between NSRI and NSR2

noise level 1 level2 level3 level 4

NSR1 0% 5.03% 10.10% 20.04%

NSR2 0% 17.30% 34.72% 68.85%

Due to the huge amount of equivalent noise imposed on h2(s), both NB and NSTD

values for h2(s) are approximately doubled comparing to Example 1. Like the results

in Example 3 for system h_ (s), the NB numbers are almost diminished to be biasless,

and the NSTD values are reduced to only half of those in Example 1. These results
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indicate the sharpest contrast between ha(s) and h2(s) among the four examples

considered.

Example 5: As the final example, we consider the system

u(s) = ha(s)ua(s)+

1.4

5 8_ta(S) _ u2(s). (4.28)s 2 + 3s + s 2 + 2s + 1

The Bode diagrasns of ha(s) and h2(s) are plotted in Figure 4.11 from which we
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Figure 4.14: Bode diagram of ha(s) and h=(s) in Example 5

can see that h2(s) has not only a noticeably lower frequency bandwidth, but also a

higher steady state gain. The results of 200 Monte Carlo runs are listed in Table 4.5,

and the normalized bias (NB) and standard deviation (NSTD) computed from the

table are plotted in Figures 4.15 and 4.16 respectively. In this case, the corresponding
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13995
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0.00973
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1
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0.00001
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0.00022

0.9821

0.04599 0.03006 0.00521

NSR: noise to signal ratio. SEll: signal to error ratio.

0-2 0.00824 0.00355 0.00580 0.00637 0.00099

m 4.9389 2.9919 7.8626 1.8174 0.9247

o2 0.04197 0.01485

m: mean value, 02: varumc¢,

NSRL

NSR2

0%

0%

5.11%

4.63%

10.53%

9.54%

19.12%

17.33%

rnsl_

58.99dB

2.297dB

44.76dB

3.725dB

38.24dB

3.682dB

30.85dB

5.112dB

Table 4.5: Numerical results of 200 Monte Carlo runs for Example 5

relationship between NSRx and NSR2 is

relationship between NSR1 and NSR2

level 1 level2 level 3 level 4

0% 5.11% 10.53% 19.12%

noise

NSR1

NSR2 O% 4.63% 9.54% 17.33%

From above form, we can see that additive noise levels in both channels are in the

same range, which is analogous to Example 1. However, narrowing the bandwidth

of h2(s) has made the NB and NSTD numbers for hx(s) much smaller comparing to

Example 1. For h2(s), the NSTD numbers are also decreased and the NB numbers

remain basically unchanged with respect to Example 1. Again, the iteration steps

required for convergence of the AWLS/MFT algorithm in this case are noticeably

fewer than those cases in Example 1 and 2.
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4.3.4 Cross Comparisons and Comments

In our arrangement, system ha(s) and its I/O pairs (ul(t),yl(t)) have been kept the

same in all five examples; therefore, noise generated by equation (4.21) guarantees

that the three additive noise levels (about5%, 10%, 20%) are physically in the same

range in all five examples. After the five examples regarding different SISO subsystem

combinations have been presented, some cross comparisons among them will be made

here with the hope that further revelation could be made about the influence of

different subsystem combinations on estimate bias and deviations.

When there is no additive noise present in the output y(t), the parameters have been

perfectly retrieved in all five MISO systems, no matter what combination it has.

A narrower bandwidth as in Examples 3 and 5 has surprisingly improved both the

speed and the quality of estimation on both h_(s) and h2(s) (especially for system

hi(s)). This has not been an anticipated result, because our modulating frequency

range has been chosen based on the higher frequency bandwidth, so that the sys-

tem h2(s), which has a narrower bandwidth, has been overmodulated with respect

to its bandwidth. Pearson and Lee [39] had demonstrated that for the LS/MFT al-

gorithm, this kind of overmodulating could incur estimation error. Therefore, only

the contrary was expected at first. These "puzzling" results have been simulated

many times and it has been found that the results are very much repeatable. This

fact, on the other hand, is helpful in making the following two conclusions: (1) The

AWLS/MFT algorithm is not as sensitive to the chosen modulating bandwidth or to

120



overmodulating as is the LS/MFT scheme3; (2) The difference in bandwidth might

actually make it easier for the AWLS/MFT algorithm to separate or distinguish the

contributions from the two systems hi(s) and h2(s) to the single available output,

and this might be more or less like a two-category classification problem in a pattern

recognition framework in which the greater the distance between two clusters in the

feature vector space, the better or more accurate the classification will be.

When a lower gain h2(s) is used as in Example 2, both the NB and NSTD values

for h2(s) were up slightly with respect to Example 1, but meanwhile the NB and

NSTD numbers for hi(s) came down a little bit, correspondingly. From Example 3

to Example 4, the gain of h_(s) was reduced from 0.6 to 0.3; here the adverse impact

on the higher gain subsystem hi(s) has not been noticed at all relative to that in

Example 3, while the NB and NSTD numbers for h2(s) have been doubled. Therefore,

lowering the gain of a SISO subsystem in the MISO identification problem will lower

the accuracy of estimation for that subsystem, mainly because of the increase of its

NSR2 numbers. This is also consistent with Example 5, where increasing the gain of

system h2(s) has improved its NSTD numbers slightly.

Comparing to Example 1, the composite effect of narrowing the bandwidth and low-

ering the gain of h2(s) relative to h_(s) has been demonstrated more revealingly in

Examples 4 and 5. In Example 4, the NB and NSTD values for hi(s) have been

decreased to half those in Example 1, and meanwhile these two numbers have been

aThis property of AWLS/MFT will be further illustrated in the estimation of the Longitudinal

dynamics of an F-18 aircraft (see Section 5.4.2).
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almostdoubledfor h2(s). In Example 5, narrowing the bandwidth and increasing the

gain of system h2(s) not only reduced the NB and NSTD numbers for ha(s), but also

lower the NSTD numbers for system h2(s).

Another measure of quality of parameter identification is the time domain perfor-

mance of the estimated systems or models. The SER number mentioned in Sec-

tion 4.3.2 is one such quantity characterizing the time domain performance of the

model. In our Monte Carlo simulation studies, the mean and standard deviation

of SER have been recorded and presented in Tables 4.1_ 4.5 from which the SER

numbers in all five examples are fairly close to each other at each noise level NSR1;

consistent with the NB and NSTD measures, Example 3 has about a 2dB edge over the

equal bandwidth combinations. In order to provide some visual perception about the

meaning of SER number, one typical Monte Carlo run in Example 1 with NSR1 = 20%

has been plotted in Figure 4.17.

4.4 Concluding Remarks

Without constraints among the denominator polynomials of a MIMO system, the

parameter identification can be decomposed into several independent MISO sub-

problems due to the joint cost function (4.15) stemming from the joint likelihood

function of regression errors. The AWLS/MFT has been the core in forming the

overall algorithm or procedure to solving this MISO identification problem. If the

original form (4.1) is unmodulatabte, it has to be converted into the modulatable
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form first and then apply the AWLS/MFT algorithm to estimate this higher order

modulatable system. After that, as a model reduction tool, the AWLS/MFT scheme

with specified lower orders can then be utilized for each subsystem to acquire the

parameter identification of the original unmodulatable forms. Due to the fact that

model reduction is carried out based on the estimate of the higher order system, it

follows that the accuracy of the first AWLS/MFT estimate would be very crucial

to the rest of the estimation. With the setup in our simulation studies, the results

obtained in this higher order model stage are approximately a maximum likelihood

estimate.

The most intriguing phenomenon is the influence of the bandwidths of the two sub-
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systemson the final quality of estimation. It is somehow contrary to the conventional

wisdom to conclude that this difference of bandwidths actually benefits the estimate

for both subsystems, even though the noise level NSR2 due to the narrowing band-

width of subsystem h_(s) has been almost doubled. Some underlying explanation

from MFT itself or other approaches like artificial neural networks (ANN) should be

targeted in the future research. Another implication of this phenomenon is that the

AWLS/MFT algorithm is not sensitive to the modulating frequency bandwidth.

Although the subsystem with lower gain has been seen as a drawback in our examples,

the good time domain performance SER values have been persuasive enough to ensure

its usability. Overall, the AWLS/MFT algorithm has been successfully applied to

MISO parameter identification problems.

124



Chapter 5

System Identification of the

Longitudinal and Lateral

Dynamics of an F-18 Aircraft

Using the AWLS/MFT Algorithm

5.1 Introduction

5.1.1 Flight Variables Used in This Project

Referring to Figure 5.1, the body axis system of an aircraft is taken with the center

at the center of gravity (C.G.) of the airplane, OX forward, OY out the right wing,

and OZ downward as seen by the pilot [4]. Most aircraft are symmetric with respect
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0

Figure 5.1: Sketch of earth axes and aircraft body axes

to the OXZ plane. In order to describe the motion of the aircraft with respect to the

earth or inertial space, a set of Euler angles, specifying the orientation of OXYZ with

respect to an earth axis system OX_YEZE with its origin at the center of gravity of

the aircraft and nonrotating with respect to the earth, can be used for this purpose

(see Figure 5.1). We denote the three airplane body axis angular velocities as follows:

Q : body axis pitch rate (rad/sec)

P : body axis roll rate (rad/sec)

R : body axis yaw rate (rad/sec).

The transformation between the Euler angles (_, O, ¢) and the angular velocities of

the aircraft body axis (Q,P,R)can be written as [4]

P = (_-_sinO

Q = Ocos¢+_cosOsin_
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R = -6sinO+_cosOcosO

Another two output quantities defined in Fig. 5.2 are (1) a : the angle of attack (rad),

and (2) /3 : the sideslip angle (rad) of the aircraft. In addition, three major control

variables (driving forces) in the F-18 are

6h : symmetric horizontal tail deflection (tad)

6_ : asymmetric aileron deflection (tad)

_, : symmetric rudder deflection (rad)

As mentioned earlier, we just need to be concerned about small perturbations, denoted

as (a(t),/3(t), q(t),p(t),r(t), ¢(t)), around the equilibrium (or trim) operating point

of flight, (a0,/30, Q0, P0, Ro, 00) 1. These small disturbances will be bounded with a

set of linearized differential equations under a series of assumptions (see page 25 in

1As suggested by Dr. V. Klein, all the trim conditions in our studies will be determined by

averaging the time domain sequences.
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[4]); those coefficients (stability derivatives) of the differential equations will be the

targets of this chapter.

5.1.2 Criterion of Model Performance

Far different from the simulation studies where the true parameters can be used luxu-

riously to evaluate the quality of estimations by forming bias and standard deviations,

when the original system is not known beforehand, the only seemingly reasonable al-

ternative left is to compare the time domain performance of estimated models with

the physical output. Traditionally, as used in the simulation studies, the signal to

error ratio (SER), defined as

{ HY(t)'I2 } (5.1)SER = 20. log,0 Ily(t ) _ _(t)ll 2

could serve the purpose of evaluating the time domain performance, where y(t) is the

physical output instead of the "ideal" output (as in the simulation cases) and _(t)

is the estimated output. Due to the long transient time of the aircraft system, the

nonzero initial condition used in the MATLAB simulation routine LSIM() might play

an important role in determining _(t) after the parameters are estimated, although

this unknown initial condition has no impact on the quality of the estimations at all.

In order to be as objective as possible to estimate _(t), a Luenberger Observer based

initial condition (I.C.) estimation scheme was suggested by Pearson (see Appendix C)

and it will be used as a standard tool in this chapter.

As requested by NASA, the algorithms developed in this chapter will be tested by
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estimating the parameters of theoretical models provided by NASA through Monte

Carlo simulations at the suggested additive noise level. In these simulation cases, the

performance criteria used in Chapter 4 for the estimated models will be employed

without further ado.

5.2 Identification of Longitudinal Dynamics

5.2.1 Longitudinal Dynamical System

As mentioned earlier, the longitudinal dynamics involve the response movement of

the aircraft in the symmetric plane OXZ and its control signal. In this case, the

input control signal would be the symmetric horizontal tail deflection 5h(t) and the

responses would be (i) the angle of attack a(t), and (ii) the body axis pitch rate q(t)

as shown in the block diagram (see Figure 5.3). Hence this is a single-input-and-two-

horizontal tail deflection
,i

r_(t)

(A(p), Bl(P) )

angle of attack a(t)

(A(p),B2(P))
body axis pitch rate q(t)

b

Figure 5.3: Block diagram of the longitudinal dynamics

output (denote as SI20) system. The general dynamical differential equations are of
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the forms2:

Aa(p)a(t) = Bl(P)Sh(t) (5.2)

A2(p)q(t) = B2(p)Sh(t) (5.3)

AI(p) = A2(p)= A(p) (5.4)

where the orders of A(p), BI(p) and B2(p) are expected to be 2, 1 and 1 respectively;

more importantly, there exists the physical pole constraint AI(p) = A2(p) = A(p) 3,

which make the algorithms developed in Chapter 4 inapplicable here.

5.2.2 AWLS Algorithm for A Constrained SIMO System

From the flight data received from NASA, the additive noise to _fh(t) is basically invis-

ible, while the a(t) and q(t) are contaminated with certain degrees of noise. Applying

2Basically this derives from

zCt) = Ax(t) + Bu(t), u(t) =c_(t)

where

According to

then

(.(t)) u(t) = _(t)v(t)= q(t) '

y(s) = C(sI - A)-lBu(s),

det(sI- A)y(s) =C(sI-A)-ldet(sI -A)u(s).

3Private communication with Dr. V. Klein.
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the measurement noise signal model and assuming that the additive noises to a(t)

and q(t) are mutually independent white sequences, the joint likelihood cost func-

tion, similar to (4.11), can be constructed. Therefore, for the constrained differential

dynamical equation set:

A(p)a(t) = Bx(p)6h(t) (5.5)g(p)q(¢) = B2(p)6h(t)

consider the joint cost function:

g(ol,O2) = (Y_ - Faoa)Tw_-I(Y_ - F10a) + u(Y2 - F2o2)Tw;a(Y2 -- F202) (5.6)

where constant u is a scaling parameter,

( )-0o 02 =
01 = Ob_ ' Ob_

and 0_, Oh1 and 062 are the parameter vectors comprising the coefficients of A(p), B° (p)

and B2(p) respectively. Partition the F1 and F2 according to:

F1 = [ro,,rb,], r2 = [ro_,rb2]; (5.7)

such that equation (5.6) can be re-written as

J(G,Ob,,Ob2) = (Y_ + Fo, G - Fb,Ob,)TW_-I(Y_ + G_Oo -- rblob,)+
u(Y2 + ra20a -- Fb2Ob2)Tw2-a(Y2q- FarO° -- Fb2Ob2)

The necessary conditions for minimizing J(Oo, Oh1,Ob,):

o_2_J_ 0, 0___A_J= 0, 0__A_J= 0
00_ -- OObl OOb2

lead to the following highly coupled equation set for {Oa, Oh1, Oh}:

-row; Yx- 5+(r_,w;lro, + _r_w;'ro_)Oo = T -1 _r_w; 1
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FT 1_1-1r, 0 T -1al VV1 lb' bl -4- Vra2W2 Fb2Ob2 (5.9)

FTW-1F Oh1 FT w_IY1 -4-FT w(-1FalO_, (5.10)bl 1 ba "= bl bl

FTb2W21Fb2Ob2 = FTb2W'-Iv2 12 3L FTb2WZaF_,2 0_, (5.11)

Under the assumptions:

• no measurement noise in the input signal 5h(t)

• the additive noises on a(t) and q(t) are independently Gaussian distributed

white processes with the variance ratios embedded in the scaling parameter v

together with the pole constraint Ax(p) = A2(p), the weighting matrices W1 and W2

are identical, i.e., W1 = W2 = W, so that updating and inverting W need be computed

just once in each iteration. The scaling parameter u can be used to accommodate

the measurement noise difference between the two output channels and to suppress

or enhance the importance of the second output in the cost function. The following

AWLS/MFT based algorithm has been employed to solve (5.9),,_(5.11):

Algorithm 6 (Constrained SIMO AWLS/MFT Algorithm) 4

1. Pick a scaling parameter value for u, v >_ O, and estimate the initial value for

Oa through the SISO system model:

A(p)[a(t) + q(t)] = [B,(p) + B2(p)]Sh(t)

using the AWLS/MFT or WLS/MFT algorithm (see Section 2.2.2 and 2.2.3).

4Please refer to Section 2.3 for the detailed arrangement of real and imaginary quantities, espe-

cially W, WR and WI in Equations (2.104) and (2.105), when the AWLS/MFT is implemented.
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2. Compute the weighting matrix W and its inverse (see Section 2.2.2, 2.2.3

and _.3).

s. substitute the valuesfor the pair {Oo,W} into (5.a0) ..d (5.1a) and solvefor

the pair {Oh1, Oh2}.

4. Estimate a new O_ from (5.9) using the values for {0bl, 062, W} from the previous

step.

. Check if the parameter value for the new O_ has changed or not, based on a

percent change in norm. If yes, go back to step 2, otherwise stop.

. Check the system output-signal-to-output error ratios S/E for the two models

in (5.5) to see if they are in rough agreement with each other. If not, try a new

value for u and repeat steps 1 .._ 6.

5.2.3 Results Using Physical Flight Data

Setup of Running AWLS/MFT Scheme

With the sampling rate Fs = 50Hz, the longitudinal maneuver flight data totalled 18

seconds (or 900 signal points for each input and output signal). The other running

parameters for the SIMO AWLS/MFT Algorithm 6 could be listed as

• resolving frequency: fo = Fs/900 = 0.056Hz

• modulating bandwidth: Fb = 0.5Hz
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• highest modulating index: M = integer(Fb/Fo) = 9.

As mentioned before, all the DC values of the flight data are subtracted as the trim

operating conditions. Therefore, the time averages of all the data blocks (including

both longitudinal and lateral channels) displayed in this Chapter are zero.

Identified Longitudinal Dynamical Models

As suggested by a theoretical model of NASA (see appendix A), the order of the

model should be n = 2. However, two order assumptions, n = 2 and n = 3, were

implemented for comparison purposes and the numerical values of the two estimated

models through 20 AWLS/MFT iterations axe presented in equations (5.12),,-(5.15):

n=2:
a(s) -1.47698 - 0.1361

5h(S) -- s 2 + 0.71298 + 0.1804 (5.12)

q(s) 0.12658 -- 1.2313

_Sh(s) - s 2 + 0.7129s + 0.1804 (5.13)

n=3:
-1.038182 - 0.57998 + 0.1013

s a + 0.648782 + 0.55078 + 0.0021 (5.14)

-0.0995s 2 - 1.12708 - 0.5700
(5.15)m

s a + 0.648782 + 0.55078 + 0.0021

Their time domain performances are plotted in Figures 5.4 and 5.5 respectively. For

n = 2 and v = 0.1, the estimated model has SER_ = 7.89dB, SERq = 9.51dB. For

n = 3 and u = 1, estimated model has performed even better, especially for channel

a(t). In these two cases, 20 iteration steps have been used. The evolution of SER

numbers relative to the iteration steps during the process of Algorithm 6 can be
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further illustrated through the following discussions and Figure 5.6 where the case of

n = 2 is plotted.

The Influence of Scaling Factor u

The overall impact of choosing different u, originally introduced to accommodate the

variance difference of the two additive output noises, can be revealed partly from the

SER-vs-iteration curves as typified in Figure 5.6, where a series of u values and their

corresponding curves are displayed. At two extremes, e.g., from u = 10 -3 ---+ 10 -5

121 i i i i
t

m_ v 0 v=l

6  =ld- ld

4 I i t I I
0 5 10 15 20 25

Iteration Steps

Figure 5.6: The influence of u on the longitudinal identification

and v = 103 ---* l0 s, the changes of the SER curves are almost invisible as if they have

reached two performance bounds. In order to enhance the performance of the a(t)

channel, a smaller u is needed (equivalent to weighting the q(t) channel less in the joint
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cost function (5.6)). Not surprisingly, reducing u will degrade the performance of the

q(t) channel. Another factor demonstrating the affect of u is that in using u = 0.001,

only 5 iteration steps are required to reach SERq = 9.74dB and SER_ = 7.69dB

(though SER_ and SERq are still varying rapidly), while 20 iterations are necessary

when u = 0.1 is used. The subtlety of the choice in u seems far more profound than we

have anticipated. The SER trade-off between the a(t) and q(t) channels has been the

dictating factor in deciding the v value in this case. However, this lack of elegancy in

determining v has been far from devastating on account of the general insensitivity to

v, a quick finding for the v which balances the importance of the two output channels

is almost trivial. Exploiting this flexibility will further enable the user to refine the

results based on the particular physical setting.

5.2.4 Simulation Results

A numerical simulation study of Algorithm 6 was required by NASA, especially at a

set of suggested additive noise levels. Using the theoretical model (A.2) of NASA as

the true system and driving it with the flight input data (horizontal tail deflection

tSh(t)), 50 Monte Carlo runs are simulated for each of several additive noise levels.

Like the previous simulation studies, the white Gaussian noise generator RANDN()

is used as the tool to manipulate the noise source. The additive noise levels (standard

deviations a's) suggested by NASA for longitudinal quantities are

• aa=O.l(degree)
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• aq = O.05(degree/sec)

Although it is a little bit ironic, a,_ = 0.1(rad) and crq = 0.05(rad/sec), instead of

cr_ = 0.1(degree) and aq = 0.05(degree/sec), were mistaken initially as the standard

deviations of the additive noises, which had virtually amplified the original values

with a scale 2_'. In this case, the additive NSR numbers on a(t) and q(t) had reached

an appalling level, 200% and 95% respectively. Fortunately, the performance of Al-

gorithm 6 is still quite promising (see Table 5.1, Figure 5.8 and 5.9). Realizing this

embarrassingly erroneous scaling, it was decided that the noise level, a_ = 0.1(degree)

and crq = 0.05(degree/sec), would be used as a normalizing scale to introduce a "nor-

malized" noise-to-signal ratio (NNSR), so that performance in a broader breadth of

additive noise levels (at which the relative additive noise between a(t) and q(t) re-

mains unchanged) could be seen (Figure 5.7). Under this normalizing configuration,

the values suggested by NASA would be NNSR = 100% (its regular NSR_ = 32% and

NSRq = 15%). One typical realization of the Monte Carlo runs at NNSR = 100% is

presented in Figure 5.8; it is seen that Algorithm 6 can provide nearly perfect results

at the NASA suggested noise levels. Even at the devastating extreme NNSR = 628%

where NSR_ = 200% and NSI_ = 95%, very impressive SER numbers still can be

observed from Figures 5.7 and 5.9.
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50 Monte Carlo Runs for Lon= , nsin_ constrained AWLS/MFI" al 0.25

numerator I num_ator 2 denominator a q NSI_

true par -0.0520 -1.4860 -1.5358 -0.2435 0.5095 0.3579 S/E(dB) S/E(dB) NSRq NNSR

mean -0.0568 -1.4842 -1.5333 -0.2407 0.5070 0.3576 39.14 44.92 20% 63%

std 0.01168 0.01279 0.00657 0.01006 0.00716 0.00362 3.091 3.482 9%

me_n* I -0.0458 I -1.4862 I "1.5355 -0.247810.511110'35921 34.75 40.96 I 32% I 100%I std* I 0.01901 0.01843 0.01127 0.01575 0.01094 0.00629 3.234 2.780 15%

mean -0.0531 -1.4898 -1.5356 -0.2497 0.5128 0.3595 31.23 35.96 50% 157%

sial 0.02610 0.03085 0.01940 0.03123 0.02062 0.00904 3.948 3.577 24%

mean -0.0698 -1.4777 -1.5313 -0.2328 0.4995 0.3556 25.18 30.25 100% 314%

std 0.05507 0.06405 0.03754 0.05004 0.03557 0.01733 3.146 3.191 47%

mean -0.0454 -1.5089 -1.5214 -0.2451 0.5123 0.3616 20.00 25.13 200% 628%

std 0.09989 0.13374 0.07999 0.09704 0.06864 0.03403 3.437 3.899 95%

NNSR is normalized NSR by the case o,, = 0.1 (deg) {NSR=32% } and oq = 0.05(dog/see) {NSR=15%}.

*means the conditions suggested by NASA.

Table 5.1: Numerical results of 50 Monte Carlo runs for the longitudinal dynamics
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Figure 5.7: SER numbers at different additive noise levels
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5.3 Identification of Lateral Dynamics

5.3.1 Lateral Dynamical Systems

aileron deflection 5a(t)

rudder deflection 6r (t)

(A(p), B,(p), B =(p))

(A(p), Bl(p), B(p))

(A(p), B(p), B=z(p))

(A(p), B(p), B{p))

sideslip angle 15(t)
b

body axis roll rate p(t)

body axis yaw rate r(t)

Euler roll angle _ (t)
ilililiJiB_B_ili_

Figure 5.10: Block diagram of the lateral dynamics

The longitudinal dynamics of aircraft seem less complex than the lateral dynam-

ics, which involve more inputs and outputs. As suggested by NASA, three s major

responses are (1) the sideslip angle /3(t); (2) the body axis roll rate p(t); and (3)

the body axis yaw rate r(t) as plotted in the block diagram (see Figure 5.10). The

Sin an early communication with NASA, they named these three quantities (fl(t),p(t), r(t)) as

the outputs and our research was carried out under this configuration. Later on, from the theoretical

model sent by NASA, the Euler roll angle ¢(t) was found to be embedded in the model as well, but

it is loosely coupled with the other quantities. In this section, all the analysis will be presented in a

two-input-and-four-output (2140) framework, from which the 2130 scheme can be derived trivially.
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mathematical differential models describing them can be expressed as

{ Al(p)_(t)

A2(p)p(t)

A3(p)r(t)

A4(p)¢(t)

= Bn(p)5_(t) + B,2(p)Sr(t)
= B21(p)Sa(t)+ B22(P)Sr(t)
= B3,(p)_o(t)+ B32(p)_r(t)
= B4,(p)_o(t)+ U42(p)_,(t)

(5.16)

The orders of {Bij(p);i = 1,2,3,4;j = 1,2} and {Ai(p);i = 1,2,3,4} are expected

to be 3 and 4 respectively. The attachment of the physical pole constraint AI(p) --

A2(p) = A3(p) = A4(p) = A(p) to the above differential equation set poses a genuine

constrained MIMO system identification problem.

5.3.2 AWLS Algorithm for A Constrained MIMO System

Similar to the longitudinal case, the additive noises to both control signals (Sa(t),5_(t))

are visually nil. Resorting to the measurement noise signal model and assuming the

additive noises to (/_(t), p(t), r(t), ¢(t)) are mutually independent white noises, the

joint likelihood cost function like (4.10) of Chapter 4 can be easily formed. Hence,

for the constrained dynamical system:

A(p)/3(t) = B11(P)Sa(t)+ B12(p)_r(t)

A(p)p(t) B2,(p)5_(t)+ B22(p)£(t)
A(p)r(t) = B31(p)5_(t)+ B32(p)Sr(t)
A(p)¢(t) = B41(p)5_(t)+ B42(p)£(t)

consider the joint cost function:

g(01, 02, 03, 04) (I/1 -r,ox)Twf _(Y_ - rloa)
+_I(Y=- r26)rw;'(Y2 - r_0_)
+_2(Y_- r_o_)rw;'(Y_ - r30_)
+_3(Y4 - r404)rWg_(Y4 - r404)

where ul, v2 and u3 are the scaling factors. The Ok vectors can be defined by

(5.17)

(5.1s)

( ) ( ) (_0o)-0_ -0_ • 03= ; 04= ,
01 = Ob_ ; 02 = Ob_ ' Oh3 Ob.
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where 0_, 0bl, 062, 063 and 064 are the parameter vectors comprising the coefficients

of A(p) and {Bil(p),Bi2;i = 1,2,3,4} respectively. Partition the Fx, F2, F3 and F4

according to

r,= [ro,,rb,]; r_= [ro_,rb_];r_= [ro3,rb,];

such that equation (5.18) can be re-written as

J (Oa,Oh,,Oh2,Ob3, Oh.) =

F4 = [ro,, rb,],

(Y1 '_ ra, Oa -- rb, Ob, )Twll (Y1 "_ ra, Oa - rb, Oh, )

-t-u3(Y4 -Jr ra, oa - Fb, Ob,)Tw41(y4 + r'a, Oa -- 1-'b,Ob,)

(5.19)

The necessary conditions for minimizing J (O_, Oh,, Oh2, Ob_, Oh,):

P_.4 _ 0, o___A_J= 0, o.__A_J= 0, a___A_J_ 0, a___A_J= 0
00,, -- OOb I 00% 00% -- 0064

lead to the following highly coupled equation set for {0_, 0b_, 062,063,0b, }:

r,T .... 1F U r T T*_-a u3rrwglr_,)oo

-rf, w,-lz, - _,rf_W_-IY2 - u2FT_ W;1yz v "pT Iz,-lv-- 3Xa 4 rv4 J4

T -1 V _T llr-l_ 0 1] T W41Fb40b,+r,,TW;-1Fb, Ob,+vlF,,_W_ F_,_Ob_+ 2",,3_3 "b_ b3+ zF,,, (5.20)

rbTl Wl- 1rbl Ob,

r,r,w;'r_,oh,

F T w_lFbsOb3b3

F7"W_lFb, Oh,b4

Under the assumptions:

rTwFaY_ + rr w?lro,0o (5.21)ba bl

T -1 T -1= rb_w_Y_+ r_,w_ ro,oo (5.22)

= r_w__ -1y3..1_ r_w3-1ro_0. (5.23)

r_ w_-Iz_+ r r w_lro,o_ (5.24)b4
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• no measurement noises in the input signals 5_(t) and 6_(t)

• the additive noises on fl(t), p(t), q(t) and ¢(t) are independent Gaussian dis-

tributed white processes with the variance ratios embedded in the scaling pa-

rameters Vl, v_ and vz

and taking account of the pole constraint AI(p) = A2(p) = Az(p) = A4(p), the

weighting matrices W1, W2, W3 and W4 are identical, i.e., W1 = W2 = W3 = W4 = W,

so that updating and inverting W need be computed just once in each iteration.

The scaling parameters vl, v_ and v3 can be used to accommodate the intensity in

measurement noise differences among the four output channels and to suppress or

enhance the importance of the p(t), r(t) and ¢(t) outputs in the cost function. The

following AWLS/MFT based algorithm has been employed to solve (5.20) ,,_ (5.23):

Algorithm 7 (Constrained MIMO AWLS/MFT Algorithm) 6

I. Pick nonnegative scaling parameter values for (Vl, v2, v3), and estimate the ini-

tial O_ through the MISO system model:

A(p)[_(t) + p(t) + r(t) + ¢(t)] = [Ba_(p) + B21(p) + B31(p) + B4,(p)]5_(t)+

[B12(p) + B22(p) + B32(p) + B42(p)]5_(t)

using AWLS/MFT or WLS/MFT algorithm (see Section 2.2.2 and 2.2.3).

2. Compute the weighting matrix W and its inverse (see Section 2.2.2, 2.2.3

and 2.3).

6Please refer to Section 2.3 for the detailed arrangement of real and imaginary quantities, espe-

cially W, WR and WI in Equations (2.104) and (2.105), when the AWLS/MFT is implemented.
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3. Substitute the values for the pair {0_, W} into (5.21) --- (5.23) and solve for the

parameter set {Ob_, Oh2, Oh3,Ob_}.

4. Estimate a new O_ from equation (5.20) usin 9 the values for {Oh1, Oh2, Oh3, Oh,, W}

from the previous step.

. Check if the parameter value for the new O_ has changed or not, based on a

percent change in norm. If yes, go back to step 2, otherwise stop.

. Check the system output-signal-to-output-error ratio S/ E for the three models

in (5.17) to see if they are in rough agreement with each other. If not, try a

new value for the triple (ul, u2, u3) and repeat 1 ,.., 6.

5.3.3 Results Using Physical Flight Data

Setup of Running the AWLS/MFT Scheme

With the sampling rate Fs = 50Hz, the lateral flight test data totalled 20.48 seconds

long (or 1024 signal points for each I/O channel). The running parameters used for

MIMO AWLS/MFT Algorithm 7 are listed below:

s resolving frequency: fo = Fs/1024 = 0.0488Hz

• modulating bandwidth: Fb = 0.5Hz

• highest modulating index: M = integer(Fb/Fo) = 10.
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Identified Lateral Dynamical Models

In this case, three output channels (/3(t), p(t), r(t)) and two inputs (6,(t), _,(t)) are

used to form a two-input-and-three-output (2130) system with constrained 4th order

denominator polynomial. After 22 iterations as shown in Figure 5.11, Algorithm 7

with va = 1 and u2 = 17 was truncated and resulted in the following estimated models:

0.2217s 3 - 1.1464s 2 + 0.5981s - 0.8248 5,(s) +
/3(s) = s 4 + 0.4633s a + 2.9945s 2 + 1.0374s + 1.5875

-0.0544s a + 0.3066s 2 - 0.1994s + 0.3975
5_(s) (5.25)

s 4 + 0.4633.s 3 + 2.9945s 2 + 1.0374s + 1.5875

-4.2991s 3 + 0.8664s 2 - 7.8554s + 3.8868 6,_(,s) +
p(s) = s 4 + 0.4633s 3 + 2.9945s 2 + 1.0374.s + 1.5875

0.4304,s 3 - 0.9799s 2 + 0.7119s - 2.5624
5_(s) (5.26)

s4 + 0.4633s3 + 2.9945s2 + 1.0374s + 1.5875

-0.3512s 3 + 1.0683s 2 - 1.2603s + 2.5927

r(s) = s4 + 0.4633sa + 2.9945s2 + 1.0374s + 1.5875 5_(s) +

-0.1687s 3 - 0.4299s 2 -0.2223s- 1.1016 $_(s) (5.27)
s 4 + 0.4633s 3 + 2.9945s 2 + 1.0374s + 1.5875

Approximately 3 minutes computation time was needed to calculate these mod-

els using an IBM 486/33 machine. The poles of the above models are located at

(-0.1312 + 1.3899i) and (-0.2235 + 0.8010i). The time domain performance of the

above models are plotted in Figure 5.12. As pointed out in the NASA model (Ap-

pendix B), the fourth state (¢(t)) could be used as a fourth output. The identifica-

tion for this configuration (equivalent to a 2140 system like (5.17) was implemented

as well by using the Algorithm 7; notice that the resulting SER numbers for the

three channels (/_(t), p(t), r(t)) slipped from (9.41,11.62,11.60)dB to the current

7Other v values have been tested and, like the longitudinal case, the results are not sensitive to

the change of v.
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Figure 5.11: SER numbers vs. iteration steps for the lateral dynamics

(7.80,6.50, 10.44)dB with ul = 1, u2 = 1 and u3 = 1. However, it should not be too

surprising to see that the estimated 2130 linear models are capable of interpreting the

physical data better than those identified with a theoretically linearized 2140 model

structure.

5.3.4 Simulation Results

Similar to the longitudinal case, numerical simulation studies on Algorithm 7 were

requested by NASA at a set of suggested additive noise levels. Using the theoretical

model (B.2) of NASA as the true system and driving it with the recorded flight input

data ($_(t) and _r(t)), 50 Monte Carlo runs are simulated for each additive noise level

on this 2140 system. Like the previous simulation studies, the white Gaussian noise

generator RANDN() is used as the tool to manipulate the noise source. The additive

noise levels (standard deviation a's) suggested by NASA for the lateral dynamics are
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Figure 5.12: Time domain performance of estimated lateral models

149



• a_ = O. 1 (degree)

• ap=O.OS(degree/sec)

• a,=O.OS(degree/sec)

• a¢ = O.Ol(degree).

Due to the initial misusage of unit (rad), we actually have tested Algorithm 7 at

other larger additive noise settings. In order to represent those results as well, the

NASA suggested noise level, the a_ = 0.1(degree), ap = 0.05(degree/sec), a, =

0.05(degree/sec) and a¢ = 0.01(degree), will be used as a normalizing scale to form

the normalized noise-to-signal ratio (NNSR). Then, the NASA suggested noise level

would be equivalent to NNSR = 100% (NSRa = 51%, NSR v = 8%, NSI_ = 14%,

and NSR¢ = 1%). As mentioned earlier, the Euler angle ¢(t) was excluded from

our initial studies on a constrained 2130 system. Here in the simulation study, the

underlying system is known to be the linear 2140 system (B.2). The AWLS/MFT

algorithms for both the 2130 and 2140 models have been tested for this ideal 2140

system; their resulting numerical values are listed in Tables 5.2,-_ 5.3. As plotted in

Figure 5.13, except for the the yaw rate r(t) at the low noise side, the time domain

performances of the two models are fairly close to each other. One typical realization

for the 2140 model at the NASA suggested noise level is plotted in Figure 5.14,

which confirms that the identified model from Algorithm 7 does give a very good

time domain performance.
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2140 I denominator

true 0o 0.4978 2.0426 0.5494 -0.0049

mean 0A957 2.0449 0.5458 -0.0051 20.58 28.60 28.41 26.72 32%

std 0.03881 0.02845 0.04582 0.00373 4.479 4.438 4.331 4.233 9%

mean* 0.4875 2.0450 0.5398 -0.0048 15.81 24.29 24.48 25.05 51%

std* 0.05198 0.04271 0.07106 0.00490 4.840 4.052 4.319 6.126 14%

mean 0.4884 2.0434 0.5414 -0.0049 12.79 20.58 20.94 19.88 80%

std 0.09070 0.06864 0.I1525 0.00874 4.503 4.234 4.556 5.900 22%

[ Signal-to-Error Ratio (dB) NSI_ NSRp

p p r _ NSI% NSR, NNSR

5% 63%

0.6%

8% 100%

1%

13% 157%

1.6%

mean 0.4658 2.0590 0.5233 -0.0040 6.44 12.80 13.03 12.74 160% 25% 314%

std 0.18730 0.13720 0.25562 0.01793 6.137 5.228 4.861 6.458 44% 3.1%

mean 0.4475 2.5177 0.6517 -0.0126 -1.28 1.78 7.31 5.76 320% 50% 628%

std 0.24609 0.47250 0.51(107 0.04366 6.822 7.378 6.203 7.422 88% 6.2%

2140 I Bu(p) Bt2(P)

true 0b, 0.0005 -1.4171 -0.3838 -0.0010 0.0098 0.3607 0.1013 -0.0096 NNSR

mean -0.0019 -1.4074 -0.3905 0.0078 0.0087 0.3573 0.1008 -0.0132 63%

std 0.05820 0.05482 0.14572 0.04695 0.00963 0.01307 0.03070 0.02189

mean* -0.0045 -1.4179 -0.4042 -0.0078 0.0115 0.3598 0.1072 -0.0107 100%

std* 0.09684 0.08393 0.23247 0.08610 0.01657 0.02239 0.05456 0.03436

mean 0.0062 -1.4258 -0.3950 -0.0160 0.0101 0.3624 0.1057 -0.0085 157%

std 0.16831 0.16294 0.35702 0.09945 0.02840 0.04245 0.07059 0.05433

mean -0.0734 - 1.4869 -0.5868 -0.0257 0.0242 0.3630 0.1394 -0.0311 314%

std 0.31107 0.22358 0.78659 0.21128 0.05095 0.06657 0.17025 0.10618

mean 0.0652 -1.4847 0.0506 O.1420 0.0099 0.2721 0.0562 -0.0262 628%

std 0.67416 0.64572 1.63521 0.54428 0.I1964 0.21488 0.32295 0.23633

2140 B2I(p) Bn(p)

true Ob2 -3.3714 -0.1695 -0.4805 0.0151 0.3206 -0.0933 -0.9442 0.0297 NNSR

mean -3.3631 -0.1555 -0.4740 0.0153 0.3197 -0.0936 -0.9429 0.0330 63%

std 0.06355 0.12431 0.15993 0.08470 0.01706 0.02368 0.05818 0.03427

mean* -3.3561 -0.1425 -0.4498 -0.0022 0.3210 -0.0956 -0.9391 0.0404 100%

std* 0.09697 0.16269 0.25232 0.11859 0.02634 0.03352 0.08786 0.04286

mean -3.3627 -0.1348 -0.4482 0.0176 0.3197 -0.1004 -0.9454 0.0348 157%

std 0.14111 0.29050 0.40911 0.18397 0.04014 0.05711 0.14626 0.07324

mean -3.3072 -0.0475 -0.4288 -0.0950 J 0.3184 -0.1109 -0.9042 0.0703 314%

std 0.30623 0.5539 0.90239 0.38923 I 0.09137 0.10302 0.31985 0.14981

mean -2.4245 -0.1986 0.5914 -1.7182 0.1630 0.0565 -0.8759 0.6018 628%

std 1.22100 0.96646 3.09565 1.68237 0.22311 0.31769 0.65002 0.61901

Table 5.2:50 Monte Carlo runs for the 2140 system, conLinued Lo next page
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Z140 B31(P) B_(p)

true_ 0.0512 0.0443 -0.2122 -0.0528 -0.2480 -0.1205 -0.4240 -0.1037 NNSR

mean -0.0604 0.0467 -0.1875 -0.0496 -0.2491 -0.1190 -0.4290 -0.1004 63%

std 0.03487 0.02961 0.07364 0.02448 0.00571 0.01420 0.01677 0.01306

mean* -0.0530 0.0604 -0.2092 -0.0472 -0.2485 -0.1217 -0.4239 -0.1027 100%

std* 0.05347 0.03910 0.12307 0.04278 0.00804 0.01814 0.03026 0.02251

mean 0.0510 0.0624 -0.1960 -0.0442 -0.2477 -0.1220 -0.4263 -0.1019 157%

std 0.06528 0.08418 0.17229 0.05617 0.01150 0.03605 0.04080 0.03247

mean 0.0668 0.0445 -0.2110 -0.0420 -0.2512 -0.1116 -0.4306 -0.1010 314%

std 0.15520 0.13645 0.43128 0.12453 0.02849 0.05995 0.10341 0.06591

mean 0.0202 0.04505 -0.2021 0.0045 -0.2403 -0.1176 -0.5743 -0.1330 628%

std 0.29986 0.25990 0.78443 0.31560 0.05071 0.09594 0.19534 0.16327

2140 B41(P)

true0b_ 0.0000 -3.3567 -0.1568 -0.5413

mean 0.0168 -3.3495 -0.0751 -0.5449

std 0.I1747 0.05168 0.655050.05851

e,2(p)

0.0000 0.2495 -0.1278 -I.0658 NNSR

-0.0050 0.2492 -0.1485 -1.0566 63%

0.04259 0.01555 0.18734 0.09533

mean* 0.0290 -3.3485 0.0128 -03366 -0.0100 0.2498 -0.1747 -1.0471 100%

std* 0.18092 0.08935 0.975410.07951 0.06590 0.02154 0.280380.14951

mean 0.0223 -3.3494 -0.0326

std 0.29690 0.13044 1.62360

mean 0.0866 -3.3152 -0.3207

std 0.66787 0.33048 3.57656

mean 0.4973 -3.3082 1.9556

std 1.466430.52769 6.73534

NNSR is normalizedNSR by the case:

•0.5339 -0.0078 0.2490 -0.1630 -I.0532 157%

0.14707 0.10710 0.03651 0A6487 0.24128

-0.5324 -0.0288 0.2403 -0.2543 -1.0216 314%

0.295080.24097 0.07876 1.02168 0.54732

-0.8647 -0.0669 0.0767 -0.3828 -1.1494 628%

1.52819 0.43575 0.35374 1.73141 1.30480

op=0.1(deg){NSR=320%},or=0.05(deg/sec){NSR=50%},

oR= 0.05(deg/sec){NSR=90%}ando,=0.01(deg){NSR=4%}

*meanstheconditionssuggestedbyNASA.

Table 5.2:50 Monte Carlo runs for the 2140 system.
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2130 NSR_ NSR_

true 0, 0.4978 2.0426 0.5494 -0.0049 I_ P R NS1L NNSR

mean 0.5896 2.0898 0.7455 0.0365 20.24 24.16 16.50 32% 5% 63%

std 0.07444 0.03430 0.16395 0.02451 4.124 5.568 4.139 9%

mean* 0.6384 2.1117 0.8310 0.0609 17.10 23.01 14.28 51% 8% 100%

std* 0.12285 0.08427 0.28007 0.04930 4.372 6.131 3.322 14%

mean 0.6435 2.1299 0.8666 0.0645 14.06 19.42 13.52 80% 13% 157%

std 0.12532 0.08223 0.26781 0.04421 4_570 4.561 3.136 22%

mean 0.7178 2.3007 1.1456 0.1165 8.23 12.25 10.42 160% 25% 314%

std 0.3840 0.22805 0.78506 0.11557 5.548 5.364 3.237 44%

mean 0.6107 3.7172 1.6432 0.3034 0.93 4.01 6.83 320% 50% 628%

std 0.27017 0.97554 0.91253 0.23535 3.953 4.083 3.021 88%

denominator Signal-to-Error Ratio (dB)

9

2130 Bal(P) I Bl,(p)

true 0bl 0.0005 -1.4171 I -0.3838 -0.0010 0.0098 0.3607 0.1013 -0.0096 NNSR

mean -0.0040 -1.4150 -0.5423 -0.0124 0.0098 0.3594 0.1389 -0.0086 63%

std 0.06130 0.06025 0.22370 0.06063 0.01000 0.01475 0.04175 0.02495

mean* -0.0073 -1.4320 -0.5980 -0.0302 0.0099 0.3651 0.1529 -0.0028 100%

std*

mean

std

mean

std

mean

std

0.11714 0.10742 0.30615 0.08245 0.02092 0.03301 0.06160 0.03911

0.0109 -1.4299 -0.5937 -0.0530 0.0119 0.3621 0.1620 0.0042 157%

0.17574 0.17090 0.42460 0.11126 0.03038 0.04210 0.07919 0.06003

-0.0562 -1.5255 -0.8527 0.0050 0.0248 0.3439 0.2060 0.0051 314%

0.31627 0.23401 1.09784 0.25488 0.05642 0.08442 0.23495 0.11614

0.0432 -0.9580 0.2054 -0.0341 0.0459 0.0591 0.3657 0.0812 628%

0.61253 0.52412 1.99219 0.82101 0.13793 0.16181 0.58878 0.27237

B2t(p) B,(p)

true 062i -3.3714 [ -0.1695 -0.4805 0.015110.3206 -0.0933 -0.9442 0.0297 NNSR
I! i

mean -3.3101 -0.4506 -0.2708 -0.08 14 0.3045 -0.0635 -1.0048 -0.0203 63%

std 0.13358 0.25478 0.58695 0.13645 0.03132 0.02744 0.14083 0.06415

mean* -3.3026 -0.6240 -0.3516 -0.0944 0.3061 -0.0440 -1.0032 -0.0695 100%

std*

mean

std

mean

std

mean

std

0.17993 0.38391 0.65234 0.25284 0.04237 0.04667 0.15822 0.06924

-3.2706 -0.5983 -0.1552 -0.1597 0.2936 -0.0503 -1.0345 -0.0493 157%

0.24672 0.41293 0.95006 0.30031 0.05082 0.05359 0.20757 0.11916

-2.8878 -0.7190 0.5547 -0.8582 0.2331 -0.0143 -1.0607 0.0725 314%

0.68298 1.29488 2.20614 0.98283 0.14829 0.17885 0.50853 0.35707

-0.4345 -0.6585 3.0656 -4.6326 -0.0942 0.4349 -0.9247 1.1387 628%

1.88277 1.08985 5.19(107 2.24115 0.33222 0.39915 1.10963 0.84094

Table 5.3:50 Monte Carlo runs for the 2130 system, continued to next page
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2130 B31(P) B_(p)

true 0_ 0.0512 0.0443 -0.2122 -0.0528 -0.2480 -0.1205 -0.4240 .0.1037 NNSR

mean 0.02974 0.0407 .0.3028 -0.0124 -0.2403 .0.1358 -0.4105 -0.1658 63%

std 0.04208 0.03095 0.10482 0.04578 0.00818 0.01889 0.02032 0.04579

mean* [ 0.0059 I 0.0414 -0.3671 0.0523 -0.2341 -0.1470 -0.3993 0.0523 100%std* [ 0.06223 I 0.04826 0.20007 0.08745 0.01266 0.03102 0.03453 0.09147

mean -0.0033 0.05834 -0.3993 0.0616 -0.2321 -0.1517 -0.3957 -0.2117 157%

std 0.07577 0.08486 0.20906 0.0992 0.01485 0.03745 0.03863 0.08203

mean .0.0302 0.0937 .0.5789 0.1915 -0.2275 -0.1728 -0.4083 .0.3194 314%

aid 0.14836 0.15328 0.45579 0.26600 0.02724 0.10844 0.09409 0.24733

mean .0.4184 0.3270 ol.9588 1.0482 .0.1594 .0.2433 -0.5940 1.0482 628%

std 0.41884 0.27371 1.42094 0.91631 0.07261 0.10470 0.35619 0.44713

NNSR is normalized NSR by the ease:

op ffi0.1(deg){NSRffi51% }, op ffi 0.05(deg/sec) {NSRffi8% },

oR ffi0.05(deg/sec) {NSR=14%} and o, = 0.01(deg) {NSRffi1%}

*means the conditions suggested by NASA.

Table 5.3:50 Monte Carlo runs for the 2130 system.

5.3.5 A Brief Comment on Minimal Realization

As seen in the above simulation studies, the true system is a fourth order state space

model, but Algorithm 7 only returns the I/O differential models instead of state-space-

looking I/O model like (B.1). One question that automatically occurs to our mind

is whether the estimated transfer function model, at the NASA suggested noise level

through Algorithm 7, could be minimally realized using a fourth order state space

model. This has been in no sense a trivial question to answer. Assuming distinct

poles, the well-known Gilbert's Diagonal Realization Scheme [15] first expands the

transfer function matrix H(s) into partial fractions:

N(3) E_ NI s'-+
H(+) d(+) (5.28)- - - i s--_i
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wherethe denominatorpolynomial is

= II( - a,)

and {P,4} are the residue matrices. Further denote

pi = the rank of P,4

and then Gilbert's method says that the minimal realization has order

T

n = _ p, (5.29)
1

So the question of obtaining a minimal realization of the transfer function model

/-/(s) has boiled down to the determination of the residue matrices {Ri} and their

ranks. As suggested by Professor A.E. Pearson, employing the partial fraction ex-

pansion algorithm in [19] and the rank determination scheme based on the singular

value decomposition technique [10], some verifications on {P,4} and {p,} have been

computed. Define the tolerance for rank determination s by:

 SVD= IIP lloo

where #,,_, is the precision of estimating the matrix elements, i.e., the maximum

standard deviation value among all the entries comprising each Ni matrix. This is

obtained from the std values in Table 5.2... 5.2. At the NASA suggested noise level,

our calculations on the models estimated by Algorithm 7 with different additive noise

realizations show that all the {P-i} have persistently been diagnosed as rank one

8All the singular values less than _SVD will be dropped.
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matrices. This meansthat the estimatedtransfer function modelcanbe realizedwith

a fourth order state spacemodel and demonstratesconsistencywith the theoretical

state spacemodel.

5.4 Miscellany

Inasmuch as many other issues pertaining to the F-18 dynamics have been investigated

as well, some relatively-peripheral-but-intriguing results should be worth mentioning

briefly in this section. Hopefully, some merit of the SISO AWLS/MFT Algorithm 2

could be further divulged through handling the physical flight data.

5.4.1 Identification of the Actuator System

The F-18 horizontal tail deflection 6h(t) is activated by the longitudinal pilot stick

movement rlh(t) through a mechanical actuator system. Using the SISO AWLS/MFT

Algorithm 2 in Section 2.2.3, the dynamics of this actuator system can be modeled

as a linear second order system resulting in the transfer function:

6h(s) _ -0.0494s 2 - 0.0462s - 0.0340 (5.30)
rlh(S) s2+ 0.25868 + 1.2987

The time domain performance of the above model has been plotted in Figure 5.15

from which we can see that the model yields an impressive time domain fit. As to

why a second order model is used, several other order model structures were also

tested and tabulated. The model (5.30) results from using the parsimony principle:
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Figure 5.15: Time domain performance of the estimated longitudinal actuator

pick the lowest order model among all the models which give a reasonable time do-

main performance. Together with the time domain performance, other approaches

like statistically checking the whiteness of the residual process W-1/2(Y - F0) using

Lemma 1 with a 95% confidence bound [5] [52] had also been adopted to determine

the model structures in our early research report to NASA.

5.4.2 Sensitivity to the Chosen Modulating Bandwidth FB

As mentioned earlier, our experience is that the AWLS/MFT Algorithm is far less sen-

sitive to the chosen modulating bandwidth FB than either the LS/MFT or WLS/MFT

algorithm. Pearson and Lee in [39] found that overmodulating (broader modulating

bandwidth than the system bandwidth) could exaggerate the estimation errors when

LS/MFT is used. In our initial studies on the longitudinal dynamics, a fourth or-

der SISO model was once built to link the longitudinal pilot stick movement to the
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body axis pitch rate q(t). The physical spectrum of the body pitch rate q(t) has a

bandwidth around 0.5Hz. During this model-building process, a set of modulating

bandwidths ranging from 0.3Hz,-,1.0Hz had been chosen for LS/MFT, WLS/MFT us-

ing both the unconstrained and constrained AWLS/MFT algorithms. The results are

summarized in Table 5.4. It is seen that the models for the LS/MFT and WLS/MFT

Sensitivity of

algorithm

FB(H z)/_M

different algodthms to the modulating

AWLS

constrained

AWLS

unconstrained

bandwidth FB

WLS LS

_ unstable
s/e--5.84dB s/e=5.84dB s/e= -4.78dB s/e= -6.79dB

0.3/12
_ unstable unstable

s/e=6.83dB s/e=6.83dB s/e= 2.09dB s/e= -3.39dB
0.4/16

J _ _ unstable
s/e=7.13dB s/e=7.13dB s/e=1.86dB s/e=1.53dB

0.5/20
unstable _ unstable

s/e=6.91dB s/e=7.56dB s/e=3.08dB s/e= -7.41dB
0.6/24

unstable _ unstable
s/e-6.51dB s/e=8.07dB s/e=3.32dB s/e- -5322dB

0.7/28
unstable unstable unstable

s/e=6.41dB s/e=8.1OdB s/e= -27.63dB s/e= -41.04dB
0.8/32

unstable unstable unstable
s/e=6.56dB s/e=7.94dB s/e= -33.98dB s/e= -27.60dB

0.9/36
unstable unstable unstable

s/e=6.47dB s/e=8.0OdB s/e= -61.97dB s/e= -121 .ldB
1.0/40

Using physical flight data to build a fourth order model linking the

longitudinal pilot stick movement (input) and the body pitch rate (output).

Table 5.4: Sensitivity of MFT algorithms to the chosen modulating bandwidth

are either stable with poor SER numbers or unstable with unacceptable SER's. On

the other hand, the estimated systems from both the constrained and unconstrained

AWLS/MFT algorithms yield much more consistent time domain performance with
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no drastic fluctuations like the LS/MFT and WLS/MFT, no matter whether the esti-

mated models are stable or not. All these help claim that the AWLS/MFT algorithm

not only performs better, but also has less sensitivity to the pre-chosen modulating

bandwidth FB.
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Appendix A

Longitudinal Model from NASA

For simulation purpose, the following linearized theoretical longitudinal models cou-

pling a(t) and q(t) are given by NASA:

&(t) = -0.16923(t) + 0.9560q(t) - 0.05205h(t)t}(t) = -0.31413(t) - 0.3403q(t) - 1.5358_Sh(t) (A.1)

The corresponding constrained differential dynamical model is

A(p)a(t) = Bl(p)Sh(t) (A.2)
A(p)q(t) = B2(p)ah(t)

where

(P )pA(p) = ( 1.0000 0.5095 0.3579 ) (A.3)
1

B2(p) -0.2435 "
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Appendix B

Lateral Model from NASA

For simulation purpose, the following linearized theoretical lateral dynamical models

coupling fl(t), p(t), r(t) and ¢(t) are given by NASA:

0.40660910801003/ib(t ) -4.4588 -0.4441 0.2692 0 p(t)

÷(t) = 0.2239 -0.0057 -0.0106 0 r(t)

¢(t) 0 1.000 0.2867 0 ¢(t)

(0.o0o5o.0o98)()-3.3714 0.3206 6_(t)

+ 0.0512 -0.2480 8r(t) "

0 0

The corresponding constrained differential dynamical model is

{ A(p)_(t) = Bll(p)(_,(t) + Bl2(p)5_(t)

A(p)p(t) = B_(p)5,(t) + B22(p)5r(t)

A(p)r(t) = B31(p)5_(t) + B32(p)5_(t)

A(p)¢(t) = B4,(p)5_(t) + B42(P)5_(t)

where

A(p) = ( 1.0000 0.4978 2.0426 0.5494 -0.0049 ) (P'/
p3

p2

(B.1)

(B.2)

(B.3)
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(oooo5B2,(p) -3.3714

B31 (p) = 0.0512

B4, (p) 0.0000

B12(p)
B22(p) 0.3206

B32(p) - -0.2480

B42(p) 0.0000

-1.4171 -0.3838 -0.0010

-0.1695 -0.4805 0.0151

0.0443 -0.2122 -0.0528

-3.3567 -0.1568 -0.5413

0.3607 0.1013 -0.0096

-0.0933 -0.9442 0.0297

-0.1205 -0.4240 -0.1037

0.2495 -0.1278 -1.0658

p3

p2

P
1

p2

P
1

(B.4)

(B.5)
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Appendix C

Initial Condition (I.C.) Estimate

via Luenberger Observor

The following algorithm for estimating I.C. is suggested by Professor A.E. Pearson.

Given (A(p),/)(p)) for the differential model _t(p)y( t ) = [_(p)u( t ), 0 < t < T, with the

I/O data pair [u(t),y(t)] on [0, T], we want to find x0 = x(0) for the state realization

_(t) = Ax(t) + Bu(t)

y(t) = Cz(t) and zo = z(O)

where (A, B, C) is any observable state space realization for B-_ i.e.,
AO) '

C(sI_A)-IB_ _(s)
_(_)"

The I.C. estimate can be constructed through the following steps:
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1. Subtract off the zero-stateresponsey,,(t) = f_ CeA(t-')Bu(r)dv from y(t):

I.C. response

2. Define the reversed I.C. response

z(t)

= Cxn(t) (C.1)

where xn(t) = e-AteATxo satisfies: }n(t) = --AxR(t), xn(O) = eATxo, and more

importantly xn(T) = Xo. Hence, we estimate xn(t) given z(t) via an observer

as follows:

fR(t) = -A_n(t)+ L(z(t)-C&n(t))

= -(A + LC)&n(t) + Lz(t)

with _R(0) an arbitrary estimate. In order to carry out the error analysis, let

_(t) = xR(t)- _n(t), then

x(t) = -Axn(t) -[-Ag'n(t) + L(Cxn(t) - C&n(t))]

= -A(xn(t)- _n(t))- LC(xn(t)- 5on(t))

= -(A + LC)_(t)

which implies

= ---- o

provided -(A + LC) is Hurwitzian.

3. Design the gain matrix L such that e -(A+Lc)T ,_ 0 and use _n(T) as an estimate

of x0, i.e., _:n(T) ,_ Xo.
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Appendix D

Some Results in M.S.

Differentiation and Integration

The following results are cited mainly from the Chapter 4 of [53].

D.1 Mean Square Continuity

Definition 1 (continuous in mean square) A second-order stationary (or wide

sense stationary) s.p. X(t), t E T, is continuous in mean square, or m.s. continuous,

at a fixed t if

l.i.m.,_,oX(t + r)= X(t) (D.1)

Theorem 1 (continuity in mean square criterion) A second-order s.p. X(t),

t E T, is m.s. continuous at t if, and only if, F(t,s) = E{X(t)X(s)} is continuous

at (t,t).

167



Definition 2 (m.s. continuous on an interval) If a second-order s.p. X(t), t E

T, is m.s. continuous at every t E [tl,t_] C T, then X(t) is m.s. continuous on the

interval [tl, t2].

D.2 Mean Square Differentiation

Definition 3 (m.s. derivative) A second-order s.p.

square derivative (or m.s. derivative) X(t) at t if

X(t), t E T, has a mean

l.i.m.,__,oX(t + r) - X(t) = X(t) (D.2)
T

Definition 4 (differentiable on an interval) If a second-order s.p. X(t), t E T,

is m.s. differentiable at every t E [tl, t2] C T, then X(t) is m.s. differentiable on the

interval [tl, t2].

Theorem 2 (criterion of m.s. differentiable) A wide sense stationary second-

order process X(t), t E T, is m.s. differentiable if, and only if, the first- and second-

order derivatives of the correlation function F(t,s) = E{X(t)X(s)} exist and are

finite at t - s = O.

D.3 Properties of Mean Square Derivatives

1. Mean square differentiability of X(t) at t E T implies m.s. continuity of X(t)

at t.
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2. The m.s. derivative X(t) of X(t) at t E T, if it exists, is unique.

3. If X(t) and Y(t) are m.s. differentiable at t E T, then the m.s. derivative of

aX(t) + bY(t) exists at t and

--dlaX(t) + bY(0] = ax(t) + b?(t)
dt

(D.3)

where a and b are constants.

4. If an ordinary function f(t) is differentiable at t e T and X(t) is m.s. differen-

tiable at t C T, then f(t)X(t) is m.s. differentiable at t and

_..dX(t)
d[f(t)X(t)]- dfd(-(tt)X(t ) + J(t) _ (D.4)

D.4 Mean Square Riemann Integration

Consider a collection of all finite partitions {p,} of an interval [a, b]. The partition

p, is defined by the subdivision points tk, k = 0, 1,2, ..., n, such that

a=t0<ta <t2 <"-<t,,=b

Let

A. = max(tk- tk-1)

and let t_, be an arbitrary point in the interval [tk-l,tk). Let X(t) be a second-order

s.p. defined on [a, b] C T. Let f(t, u) be an ordinary function defined on the same

interval for t C [a, b] and Riemann integrable for every u E U. We form the random
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variable

n

Y,,(u) = _ f(t'k,u)X(t'k)(tk -- tk-1)
k=l

Since L2-space is linear, Yn(u) is an element of the L2-space. It is a random variable

defined for each partition p, and for each u E U.

Definition 5 (m.s. Riemann integral) If, for u E U,

1.i.rn.,_--.oo,_,_oY,_(u) = Y(u)

exists for some sequence of subdivisions p,_, the s.p. Y(u), u E U, is called the mean

square Riemann integral, or rn.s. Riemann integral of f(t,u)X(t), over the interval

[a, hi, and it is denoted by

Y(u)= f(t,u)X(t)dt (D.5)

It is independent of the sequence of subdivisions as well as the positions of the t_ E

[tk_l,tk).

Theorem 3 (integration in mean square criterion) The s.p. Y(u), u c=U, de-

fined by Eq. (D.5) exists if, and onl 9 if, the ordinary double Riemann integral

]b_bs(t,u)S(s,u)rxx(t,s)dtds

exists and is finite.

D.4.1 Properties of mean square Riemann integrals

1. Mean square continuity of X(t) on [a, b] implies m.s. Riemann integrability of

x(t) on [a,b].
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2. The m.s. integral of X(t) on an interval [a,b], if it exists, is unique.

3. If X(t)is m.s. continuous on [a, b], then

where

bX(t)dt _ IlX(t)lldt <_ M(b- a)

M = max ]]X(t)]]
te[a,bl

4. If the m.s. integrals of X(t) and Y(t) exist on [a, c], then

laX(t) + flY(t)]dt = a X(t)dt + fl Y(t)dt

5. If X(t) is m.s. continuous on [a,t] C T, then

I'y(t) = X(t)dt

is m.s. continuous on T; it is also m.s. differentiable on T with

(D.6)

?(t)=x(t)

(D.7)

a < b < c (D.8)

Corollary 1 (Leibniz Rule) If X(t) is m.s. integrable on T and if the original

function f ( t, s) is continuous on T × T with a finite first partial derivative Of(t, s ) / Ot,

then the m.s. derivative of

£Y(t) = f(t,s)X(s)ds

exists at all t E T, and

Y(t) = Ja[' Of_s) X(s)ds + f(t,t)X(t) (D.9)
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Corollary 2 (Integration by Parts) Let X(t) be m.s. differentiable on T and

let the ordinary function f(t,s) be continuous on T × T whose partial derivative

Of(t,s)/Ot exists. If

Y(t) = [tf(t,s))((s)ds (D.10)
Ja

then

ff Of(t,s)Y(t) = f(t,s)X(s)lt=- Os X(s)ds

Let f(t,s) _= 1 in Eqs. (D.10) and (D.11); we have

X(t)-X(a)= X(s)ds,

(D.11)

[a, t] E T

This property is seen to be the m.s. counterpart of the fundamental theorem of the

ordinary calculus.

D.4.2 Means and Correlation Functions of M.S. Riemann

Integrals

Corollary 3 (means and correlations of m.s. Riemann Intetral) If the m.s.

Riemann integral

y(u) = f(t, )X(t)dt

exist, then

and

_a bE{Y(u)} = f(t,u)E{X(t)}dt (D.12)

E{Y(u)Y(v)} = f b f bf(t,u)f(s,v)E{X(t)X(s)}dtd s (D.13)
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